This CL uses the now standard std.subview in linalg.
Two shortcuts are currently taken to allow this port:
1. the type resulting from a view is currently degraded to fully dynamic to pass the SubViewOp verifier.
2. indexing into SubViewOp may access out of bounds since lowering to LLVM does not currently enforce it by construction.
These will be fixed in subsequent commits after discussions.
PiperOrigin-RevId: 280250129
This is a quite complex operation that users are likely to attempt to write
themselves and get wrong (citation: users=me).
Ideally, we could pull this into FunctionLike, but for now, the
FunctionType rewriting makes it FuncOp specific. We would need some hook
for rewriting the function type (which for LLVM's func op, would need to
rewrite the underlying LLVM type).
PiperOrigin-RevId: 280234164
This refactors the implementation of block signature(type) conversion to not insert fake cast operations to perform the type conversion, but to instead create a new block containing the proper signature. This has the benefit of enabling the use of pre-computed analyses that rely on mapping values. It also leads to a much cleaner implementation overall. The major user facing change is that applySignatureConversion will now replace the entry block of the region, meaning that blocks generally shouldn't be cached over calls to applySignatureConversion.
PiperOrigin-RevId: 280226936
The current implementation silently fails if the '@' identifier isn't present, making it similar to the 'optional' parse methods. This change renames the current implementation to 'Optional' and adds a new 'parseSymbolName' that emits an error.
PiperOrigin-RevId: 280214610
Since VariableOp is serialized during processBlock, we add two more fields,
`functionHeader` and `functionBody`, to collect instructions for a function.
After all the blocks have been processed, we append them to the `functions`.
Also, fix a bug in processGlobalVariableOp. The global variables should be
encoded into `typesGlobalValues`.
PiperOrigin-RevId: 280105366
Lowering of CmpIOp, DivISOp, RemISOp, SubIOp and SelectOp to SPIR-V
dialect enables the lowering of operations generated by AffineExpr ->
StandardOps conversion into the SPIR-V dialect.
PiperOrigin-RevId: 280039204
The elements of a DictionaryAttr are guaranteed to be sorted by name, so we can use a more efficient lookup when searching for an attribute.
PiperOrigin-RevId: 280035488
Existing check that sets FuncOp to be dynamically legal was just
checking that the types of the argument are SPIR-V compatible. Since
the current conversion from GPU to SPIR-V does not handle lowering
non-kernel functions, change the legality check to verify that the
FuncOp has the gpu.kernel attribute and has void(void) return type.
PiperOrigin-RevId: 280032782
During deserialization, the loop header block will be moved into the
spv.loop's region. If the loop header block has block arguments,
we need to make sure it is correctly carried over to the block where
the new spv.loop resides.
During serialization, we need to make sure block arguments from the
spv.loop's entry block are not silently dropped.
PiperOrigin-RevId: 280021777
It is often helpful to inspect the operation that the error/warning/remark/etc. originated from, especially in the context of debugging or in the case of a verifier failure. This change adds an option 'mlir-print-op-on-diagnostic' that attaches the operation as a note to any diagnostic that is emitted on it via Operation::emit(Error|Warning|Remark). In the case of an error, the operation is printed in the generic form.
PiperOrigin-RevId: 280021438
loop::ForOp can be lowered to the structured control flow represented
by spirv::LoopOp by making the continue block of the spirv::LoopOp the
loop latch and the merge block the exit block. The resulting
spirv::LoopOp has a single back edge from the continue to header
block, and a single exit from header to merge.
PiperOrigin-RevId: 280015614
This causes the AsmPrinter to use a local value numbering when printing the IR, allowing for the printer to be used safely in a local context, e.g. to ensure thread-safety when printing the IR. This means that the IR printing instrumentation can also be used during multi-threading when module-scope is disabled. Operation::dump and DiagnosticArgument(Operation*) are also updated to always print local scope, as this is the most common use case when debugging.
PiperOrigin-RevId: 279988203
This CL adds an extra pointer to the memref descriptor to allow specifying alignment.
In a previous implementation, we used 2 types: `linalg.buffer` and `view` where the buffer type was the unit of allocation/deallocation/alignment and `view` was the unit of indexing.
After multiple discussions it was decided to use a single type, which conflates both, so the memref descriptor now needs to carry both pointers.
This is consistent with the [RFC-Proposed Changes to MemRef and Tensor MLIR Types](https://groups.google.com/a/tensorflow.org/forum/#!searchin/mlir/std.view%7Csort:date/mlir/-wKHANzDNTg/4K6nUAp8AAAJ).
PiperOrigin-RevId: 279959463
This change allows for adding additional nested references to a SymbolRefAttr to allow for further resolving a symbol if that symbol also defines a SymbolTable. If a referenced symbol also defines a symbol table, a nested reference can be used to refer to a symbol within that table. Nested references are printed after the main reference in the following form:
symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*
Example:
module @reference {
func @nested_reference()
}
my_reference_op @reference::@nested_reference
Given that SymbolRefAttr is now more general, the existing functionality centered around a single reference is moved to a derived class FlatSymbolRefAttr. Followup commits will add support to lookups, rauw, etc. for scoped references.
PiperOrigin-RevId: 279860501
This operation is a companion operation to the std.view operation added as proposed in "Updates to the MLIR MemRefType" RFC.
PiperOrigin-RevId: 279766410
This code should be exercised using the existing kernel outlining unit test, but
let me know if I should add a dedicated unit test using a fake call instruction
as well.
PiperOrigin-RevId: 279436321
This also previously triggered the warning:
warning: missing field 'isRecursivelyLegal' initializer [-Wmissing-field-initializers]
legalOperations[op] = {action};
^
PiperOrigin-RevId: 279399175
This CL added op definitions for a few bit operations:
* OpShiftLeftLogical
* OpShiftRightArithmetic
* OpShiftRightLogical
* OpBitCount
* OpBitReverse
* OpNot
Also moved the definition of spv.BitwiseAnd to follow the
lexicographical order.
Closestensorflow/mlir#215
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/215 from denis0x0D:sandbox/bit_ops d9b0852b689ac6c4879a9740b1740a2357f44d24
PiperOrigin-RevId: 279350470
MLIR translation tools can emit diagnostics and we want to be able to check if
it is indeed the case in tests. Reuse the source manager error handlers
provided for mlir-opt to support the verification in mlir-translate. This
requires us to change the signature of the functions that are registered to
translate sources to MLIR: it now takes a source manager instead of a memory
buffer.
PiperOrigin-RevId: 279132972
Now that a view op has graduated to the std dialect, we can update Linalg to use it and remove ops that have become obsolete. As a byproduct, the linalg buffer and associated ops can also disappear.
PiperOrigin-RevId: 279073591
This CL ports the lowering of linalg.view to the newly introduced std.view.
Differences in implementation relate to std.view having slightly different semantics:
1. a static or dynamic offset can be specified.
2. the size of the (contiguous) shape is passed instead of a range.
3. static size and stride information is extracted from the memref type rather than the range.
Besides these differences, lowering behaves the same.
A future CL will update Linalg to use this unified infrastructure.
PiperOrigin-RevId: 278948853
This is useful for making matching cases where a non-zero value is required more readable, such as the results of a constant comparison that are expected to be equal.
PiperOrigin-RevId: 278932874
Many operations with regions add an additional 'attributes' prefix when printing the attribute dictionary to differentiate it from the region body. This leads to duplicated logic for detecting when to actually print the attribute dictionary.
PiperOrigin-RevId: 278747681
This allows GlobalOp to either take a value attribute (for simple constants) or a region that can
contain IR instructions (that must be constant-foldable) to create a ConstantExpr initializer.
Example:
// A complex initializer is constructed with an initializer region.
llvm.mlir.global constant @int_gep() : !llvm<"i32*"> {
%0 = llvm.mlir.addressof @g2 : !llvm<"i32*">
%1 = llvm.mlir.constant(2 : i32) : !llvm.i32
%2 = llvm.getelementptr %0[%1] : (!llvm<"i32*">, !llvm.i32) -> !llvm<"i32*">
llvm.return %2 : !llvm<"i32*">
}
PiperOrigin-RevId: 278717836
This adds an importer from LLVM IR or bitcode to the LLVM dialect. The importer is registered with mlir-translate.
Known issues exposed by this patch but not yet fixed:
* Globals' initializers are attributes, which makes it impossible to represent a ConstantExpr. This will be fixed in a followup.
* icmp returns i32 rather than i1.
* select and a couple of other instructions aren't implemented.
* llvm.cond_br takes its successors in a weird order.
The testing here is known to be non-exhaustive.
I'd appreciate feedback on where this functionality should live. It looks like the translator *from MLIR to LLVM* lives in Target/, but the SPIR-V deserializer lives in Dialect/ which is why I've put this here too.
PiperOrigin-RevId: 278711683
A pattern rewriter hook, mergeBlock, is added that allows for merging the operations of one block into the end of another. This is used to support a canonicalization pattern for branch operations that folds the branch when the successor has a single predecessor(the branch block).
Example:
^bb0:
%c0_i32 = constant 0 : i32
br ^bb1(%c0_i32 : i32)
^bb1(%x : i32):
return %x : i32
becomes:
^bb0:
%c0_i32 = constant 0 : i32
return %c0_i32 : i32
PiperOrigin-RevId: 278677825
This simplifies the implementation quite a bit, and removes the need for explicit string munging. One change is made to some of the enum elements of SPV_DimAttr to ensure that they are proper identifiers; The string form is now prefixed with 'Dim'.
PiperOrigin-RevId: 278027132
This simplifies the implementation, and removes the need to do explicit string manipulation. A utility method 'parseDimensionList' is added to the DialectAsmParser to simplify defining types and attributes that contain shapes.
PiperOrigin-RevId: 278020604
This greatly simplifies the implementation and removes custom parser functionality. The necessary methods are added to the DialectAsmParser.
PiperOrigin-RevId: 278015983
Now that a proper parser is passed to these methods, there isn't a need to explicitly pass a source location. The source location can be recovered from the parser as necessary. This removes the need to explicitly decode an SMLoc in the case where we don't need to, which can be expensive.
This requires adding some basic nesting support to the parser for supporting nested parsers to allow for remapping source locations of the nested parsers to the top level parser for accurate diagnostics. This is due to the fact that the attribute and type parsers use different source buffers than the top level parser, as they may be represented in string form.
PiperOrigin-RevId: 278014858
These classes are functionally similar to the OpAsmParser/Printer classes and provide hooks for parsing attributes/tokens/types/etc. This change merely sets up the base infrastructure and updates the parser hooks, followups will add hooks as needed to simplify existing handrolled dialect parsers.
This has various different benefits:
*) Attribute/Type parsing is much simpler to define.
*) Dialect attributes/types that contain other attributes/types can now use aliases.
*) It provides a 'spec' with which we may use in the future to auto-generate parsers/printers.
*) Error messages emitted by attribute/type parsers can provide character exact locations rather than "beginning of the string"
PiperOrigin-RevId: 278005322
BitEnumAttr is a mechanism for modelling attributes whose value is
a bitfield. It should not be scoped to the SPIR-V dialect and can
be used by other dialects too.
This CL is mostly shuffling code around and adding tests and docs.
Functionality changes are:
* Fixed to use `getZExtValue()` instead of `getSExtValue()` when
getting the value from the underlying IntegerAttr for a case.
* Changed to auto-detect whether there is a case whose value is
all bits unset (i.e., zero). If so handle it specially in all
helper methods.
PiperOrigin-RevId: 277964926
The current lowering of loops to GPU only supports lowering of loop
nests where the loops mapped to workgroups and workitems are perfectly
nested. Here a new lowering is added to handle lowering of imperfectly
nested loop body with the following properties
1) The loops partitioned to workgroups are perfectly nested.
2) The loop body of the inner most loop partitioned to workgroups can
contain one or more loop nests that are to be partitioned across
workitems. Each individual loops nests partitioned to workitems should
also be perfectly nested.
3) The number of workgroups and workitems are not deduced from the
loop bounds but are passed in by the caller of the lowering as values.
4) For statements within the perfectly nested loop nest partitioned
across workgroups that are not loops, it is valid to have all threads
execute that statement. This is NOT verified.
PiperOrigin-RevId: 277958868
This CL adds a simple pattern for specifying producer-consumer fusion on Linalg operations.
Implementing such an extension reveals some interesting properties.
Since Linalg operates on a buffer abstraction, the output buffers are specified as in/out parameters to the ops. As a consequence, there are no SSA use-def chains and one cannot specify complex dag input patterns with the current infrastructure.
Instead this CL uses constraints based on the existing linalg dependence analysis to focus the pattern and refine patterns based on the type of op that last wrote in a buffer.
This is a very local property and is less powerful than the generic dag specification based on SSA use-def chains.
This will be generalized in the future.
PiperOrigin-RevId: 277931503