This allows us to put dynamic initializers for weak data into the same
comdat group as the data being initialized. This is necessary for MSVC
ABI compatibility. Once we have comdats for guard variables, we can use
the combination to help GlobalOpt fire more often for weak data with
guarded initialization on other platforms.
Reviewers: nlewycky
Differential Revision: http://reviews.llvm.org/D3499
llvm-svn: 209015
definition below all of the header #include lines, lib/Transforms/...
edition.
This one is tricky for two reasons. We again have a couple of passes
that define something else before the includes as well. I've sunk their
name macros with the DEBUG_TYPE.
Also, InstCombine contains headers that need DEBUG_TYPE, so now those
headers #define and #undef DEBUG_TYPE around their code, leaving them
well formed modular headers. Fixing these headers was a large motivation
for all of these changes, as "leaky" macros of this form are hard on the
modules implementation.
llvm-svn: 206844
The use_iterator redesign in r203364 introduced an increment past the
end of a range in -objc-arc-contract. Added an explicit check for the
end of the range.
<rdar://problem/16333235>
llvm-svn: 204195
This requires a number of steps.
1) Move value_use_iterator into the Value class as an implementation
detail
2) Change it to actually be a *Use* iterator rather than a *User*
iterator.
3) Add an adaptor which is a User iterator that always looks through the
Use to the User.
4) Wrap these in Value::use_iterator and Value::user_iterator typedefs.
5) Add the range adaptors as Value::uses() and Value::users().
6) Update *all* of the callers to correctly distinguish between whether
they wanted a use_iterator (and to explicitly dig out the User when
needed), or a user_iterator which makes the Use itself totally
opaque.
Because #6 requires churning essentially everything that walked the
Use-Def chains, I went ahead and added all of the range adaptors and
switched them to range-based loops where appropriate. Also because the
renaming requires at least churning every line of code, it didn't make
any sense to split these up into multiple commits -- all of which would
touch all of the same lies of code.
The result is still not quite optimal. The Value::use_iterator is a nice
regular iterator, but Value::user_iterator is an iterator over User*s
rather than over the User objects themselves. As a consequence, it fits
a bit awkwardly into the range-based world and it has the weird
extra-dereferencing 'operator->' that so many of our iterators have.
I think this could be fixed by providing something which transforms
a range of T&s into a range of T*s, but that *can* be separated into
another patch, and it isn't yet 100% clear whether this is the right
move.
However, this change gets us most of the benefit and cleans up
a substantial amount of code around Use and User. =]
llvm-svn: 203364
business.
This header includes Function and BasicBlock and directly uses the
interfaces of both classes. It has to do with the IR, it even has that
in the name. =] Put it in the library it belongs to.
This is one step toward making LLVM's Support library survive a C++
modules bootstrap.
llvm-svn: 202814
Summary:
I searched Transforms/ and Analysis/ for 'ByVal' and updated those call
sites to check for inalloca if appropriate.
I added tests for any change that would allow an optimization to fire on
inalloca.
Reviewers: nlewycky
Differential Revision: http://llvm-reviews.chandlerc.com/D2449
llvm-svn: 200281
can be used by both the new pass manager and the old.
This removes it from any of the virtual mess of the pass interfaces and
lets it derive cleanly from the DominatorTreeBase<> template. In turn,
tons of boilerplate interface can be nuked and it turns into a very
straightforward extension of the base DominatorTree interface.
The old analysis pass is now a simple wrapper. The names and style of
this split should match the split between CallGraph and
CallGraphWrapperPass. All of the users of DominatorTree have been
updated to match using many of the same tricks as with CallGraph. The
goal is that the common type remains the resulting DominatorTree rather
than the pass. This will make subsequent work toward the new pass
manager significantly easier.
Also in numerous places things became cleaner because I switched from
re-running the pass (!!! mid way through some other passes run!!!) to
directly recomputing the domtree.
llvm-svn: 199104
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.
Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.
But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.
llvm-svn: 199082
Due to the previously added overflow checks, we can have a retain/release
relation that is one directional. This occurs specifically when we run into an
additive overflow causing us to drop state in only one direction. If that
occurs, we should bail and not optimize that retain/release instead of
asserting.
Apologies for the size of the testcase. It is necessary to cause the additive
cfg overflow to trigger.
rdar://15377890
llvm-svn: 194083
The reason that I am turning off this optimization is that there is an
additional case where a block can escape that has come up. Specifically, this
occurs when a block is used in a scope outside of its current scope.
This can cause a captured retainable object pointer whose life is preserved by
the objc_retainBlock to be deallocated before the block is invoked.
An example of the code needed to trigger the bug is:
----
\#import <Foundation/Foundation.h>
int main(int argc, const char * argv[]) {
void (^somethingToDoLater)();
{
NSObject *obj = [NSObject new];
somethingToDoLater = ^{
[obj self]; // Crashes here
};
}
NSLog(@"test.");
somethingToDoLater();
return 0;
}
----
In the next commit, I remove all the dead code that results from this.
Once I put in the fixing commit I will bring back the tests that I deleted in
this commit.
rdar://14802782.
rdar://14868830.
llvm-svn: 189869
I fixed the aforementioned problems that came up on some of the linux boxes.
Major thanks to Nick Lewycky for his help debugging!
rdar://14590914
llvm-svn: 188122
This reverts commit r187941.
The commit was passing on my os x box, but it is failing on some non-osx
platforms. I do not have time to look into it now, so I am reverting and will
recommit after I figure this out.
llvm-svn: 187946
This is the first patch in a series of 3 patches which clean up how we create
runtime function declarations in the ARC optimizer when they do not exist
already in the IR.
Currently we have a bunch of duplicated code in ObjCARCOpts, ObjCARCContract
that does this. This patch refactors that code into a separate class called
ARCRuntimeEntryPoints which lazily creates the declarations for said
entrypoints.
The next two patches will consist of the work of refactoring
ObjCARCContract/ObjCARCOpts to use this new code.
llvm-svn: 185740
This is apart of a series of patches to encapsulate PtrState.RRI and
make PtrState.RRI a private field of PtrState.
*NOTE* This is actually the second commit in the patch stream. I should
have put this note on the first such commit r184528.
llvm-svn: 184532