It appears for Swift there was confusing errors when trying to parse APINotes, when libAPINotes and libInterfaceStub are linked, they both export symbol
`__ZN4llvm4yaml7yamlizeINS_12VersionTupleEEENSt3__19enable_ifIXsr16has_ScalarTraitsIT_EE5valueEvE4typeERNS0_2IOERS5_bRNS0_12EmptyContextE`, and discovered
same symbol defined within llvm-ifs.
This consolidates the boilerplate into YAMLTraits and defers the specific validation in reading the whole input.
fixes: rdar://problem/70450563
Reviewed By: phosek, dblaikie
Differential Revision: https://reviews.llvm.org/D89764
Comparing 32-bit `ptrdiff_t` against 32-bit `unsigned` results in
`-Wsign-compare` warnings for both GCC and Clang.
The warning for the cases in question appear to identify an issue
where the `ptrdiff_t` value would be mutated via conversion to an
unsigned type.
The warning is resolved by using the usual arithmetic conversions to
safely preserve the value of the `unsigned` operand while trying to
convert to a signed type. Host platforms where `unsigned` has the same
width as `unsigned long long` will need to make a different change, but
using an explicit cast has disadvantages that can be avoided for now.
Reviewed By: dantrushin
Differential Revision: https://reviews.llvm.org/D89612
Passes that are run after the post-RA scheduler may insert instructions like
waitcnt which eliminate the need for certain noops. After this patch the
scheduler is still aware of possible latency from hazards but noops will
not be inserted until the dedicated hazard recognizer pass is run.
Depends on D89753.
Reviewed By: foad
Differential Revision: https://reviews.llvm.org/D89754
If a target can encode multiple wait-states into a noop allow emitting such
instructions directly.
Reviewed By: rampitec, dmgreen
Differential Revision: https://reviews.llvm.org/D89753
Change waitcnt insertion to check the memory operand tokens to see if
flat memory operations access VMEM in the same way it does to check if
accessing LDS. This avoids adding waitcnt for counters for address
spaces that are not accessed.
In addition, only generate the pessimistic waitcnt 0 if a flat memory
operation appears to access both VMEM and LDS.
This benefits flat memory operations that explicitly specify the
address space as GLOBAL or LOCAL.
Differential Revision: https://reviews.llvm.org/D89618
This patch teaches BasicBlock::print to construct an instance of
SlotTracker with the containing function.
Without this patch, we dump:
*** IR Dump After LoopInstSimplifyPass ***
; Preheader:
br label %1
; Loop:
<badref>: ; preds = %1, %0
br label %1
Note "<badref>" above. This happens because BasicBlock::print calls:
SlotTracker SlotTable(this->getModule());
Note that this constructor does not add the contents of functions to
the slot table. That is, basic blocks are left unnumbered.
This patch fixes the problem by switching to:
SlotTracker SlotTable(this->getParent());
which does add the contents of the Module and the function,
this->getParent(), to the slot table.
Differential Revision: https://reviews.llvm.org/D89567
This is to simplify icmp instructions in the form like:
%cmp = icmp eq i32 (i8*, i8*)* bitcast (i32 (i32**, i32**)* @f32 to i32
%(i8*, i8*)), bitcast (i32 (i64**, i64**) @f64 to i32 (i8*, i8*)*)
Here @f32 and @f64 are two functions.
Differential Revision: https://reviews.llvm.org/D87850
When generating the use-list order, also consider value uses that are
operands which are wrapped in metadata; e.g. llvm.dbg.value operands.
This fixes PR36778. The test case is based on the reproducer from that
report.
Reviewed By: dexonsmith
Differential Revision: https://reviews.llvm.org/D53758
Avoid having to instantiate and compile a subset of the dominator tree logic
separately for each node type. More importantly, this allows generic
algorithms to be built on top of dominator trees without writing them as
templates -- such algorithms can now use opaque CfgBlockRef and
CfgInterface instead.
A type-erased implementation of dominator trees could be written in
terms of CfgInterface as well, but doing so would change the current
trade-off: it would slightly reduce code size at the cost of a slight
runtime overhead.
This patch does not change the trade-off, as it only does type-erasure
where basic blocks can be treated in a fully opaque way, i.e. it only
moves methods that don't require iteration over CFG successors and
predecessors.
v5:
- rename generic_{begin,end,children} back without the generic_ prefix
and refer explictly to base class methods in NewGVN, which wants to
mutate the order of dominator tree node children directly
v6:
- style change: iDom -> idom; it's arguable whether this is really
invalid, since it is actually standard camelCase, but clang-tidy
complains about it so... *shrug*
- rename {to,from}Generic -> {wrap,unwrap}Ref
Change-Id: Ib860dc04cf8bb093d8ed00be7def40d662213672
Differential Revision: https://reviews.llvm.org/D83089
Remove getAllVGPR32() interface and update the SGPR spill code to use
a proper method to get the relevant VGPR registers list.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D89806
isMemTerminator checks if the current def is a memory terminator that
terminates the memory pointed to by DefLoc. We do not have to add any of
their users to the worklist, because the follow-on users cannot read the
memory in question.
This leads to more stores eliminated in the presence of lifetime calls.
Previously we added the users of those intrinsics to the worklist,
limiting elimination.
In terms of removed stores, this gives a nice boost on some benchmarks
(MultiSource/SPEC2000/SPEC2006 on X86 with -flto -O3):
Same hash: 205 (filtered out)
Remaining: 32
Metric: dse.NumFastStores
Program base patch diff
test-suite...000/197.parser/197.parser.test 4.00 8.00 100.0%
test-suite...rolangs-C++/family/family.test 4.00 7.00 75.0%
test-suite...marks/7zip/7zip-benchmark.test 1722.00 2189.00 27.1%
test-suite...CFP2000/177.mesa/177.mesa.test 30.00 38.00 26.7%
test-suite :: External/Nurbs/nurbs.test 44.00 49.00 11.4%
test-suite...lications/sqlite3/sqlite3.test 115.00 128.00 11.3%
test-suite...006/447.dealII/447.dealII.test 2715.00 3013.00 11.0%
test-suite...ProxyApps-C++/CLAMR/CLAMR.test 237.00 261.00 10.1%
test-suite...tions/lambda-0.1.3/lambda.test 40.00 44.00 10.0%
test-suite...3.xalancbmk/483.xalancbmk.test 1366.00 1475.00 8.0%
test-suite...abench/jpeg/jpeg-6a/cjpeg.test 13.00 14.00 7.7%
test-suite...oxyApps-C++/miniFE/miniFE.test 43.00 46.00 7.0%
test-suite...lications/ClamAV/clamscan.test 230.00 246.00 7.0%
test-suite...006/450.soplex/450.soplex.test 284.00 299.00 5.3%
test-suite...nsumer-jpeg/consumer-jpeg.test 21.00 22.00 4.8%
- In general, a generic point may alias to pointers in all other address
spaces. However, for certain cases enforced by the programming model,
we may found a generic point won't alias to pointers to local objects.
* When a generic pointer is loaded from the constant address space, it
could only be a pointer to the GLOBAL or CONSTANT address space.
Thus, it won't alias to pointers to the PRIVATE or LOCAL address
space.
* When a generic pointer is passed as a kernel argument, it also could
only be a pointer to the GLOBAL or CONSTANT address space. Thus, it
also won't alias to pointers to the PRIVATE or LOCAL address space.
Differential Revision: https://reviews.llvm.org/D89525
This reverts commit 1b589f4d4d and relands the D89463
with the fix: update `MappingTraits<FileFilter>::validate()` in ClangTidyOptions.cpp to
match the new signature (change the return type to "std::string" from "StringRef").
Original commit message:
This:
Changes the return type of MappingTraits<T>>::validate to std::string
instead of StringRef. It allows to create more complex error messages.
It introduces std::vector<std::pair<StringRef, bool>> getEntries():
a new virtual method of Section, which is the base class for all sections.
It returns names of special section specific keys (e.g. "Entries") and flags that says if them exist in a YAML.
The code in validate() uses this list of entries descriptions to generalize validation.
This approach was discussed in the D89039 thread.
Differential revision: https://reviews.llvm.org/D89463
The CfgTraits abstraction simplfies writing algorithms that are
generic over the type of CFG, and enables writing such algorithms
as regular non-template code that operates on opaque references
to CFG blocks and values.
Implementations of CfgTraits provide operations on the concrete
CFG types, e.g. `IrCfgTraits::BlockRef` is `BasicBlock *`.
CfgInterface is an abstract base class which provides operations
on opaque types CfgBlockRef and CfgValueRef. Those opaque types
encapsulate a `void *`, but the meaning depends on the concrete
CFG type. For example, MachineCfgTraits -- for use with MachineIR
in SSA form -- encodes a Register inside CfgValueRef. Converting
between concrete references and opaque/generic ones is done by
CfgTraits::{fromGeneric,toGeneric}. Convenience methods
CfgTraits::{un}wrap{Iterator,Range} are available as well.
Writing algorithms in terms of CfgInterface adds some overhead
(virtual method calls, plus in same cases it removes the
opportunity to inline iterators), but can be much more convenient
since generic algorithms can be written as non-templates.
This patch adds implementations of CfgTraits for all CFGs on
which dominator trees are calculated, so that the dominator
tree can be ported to this machinery. Only IrCfgTraits (LLVM IR)
and MachineCfgTraits (Machine IR in SSA form) are complete, the
other implementations are limited to the absolute minimum
required to make the upcoming dominator tree changes work.
v5:
- fix MachineCfgTraits::blockdef_iterator and allow it to iterate over
the instructions in a bundle
- use MachineBasicBlock::printName
v6:
- implement predecessors/successors for all CfgTraits implementations
- fix error in unwrapRange
- rename toGeneric/fromGeneric into wrapRef/unwrapRef to have naming
that is consistent with {wrap,unwrap}{Iterator,Range}
- use getVRegDef instead of getUniqueVRegDef
v7:
- std::forward fix in wrapping_iterator
- fix typos
v8:
- cleanup operators on CfgOpaqueType
- address other review comments
Change-Id: Ia75f4f268fded33fca11218a7d578c9aec1f3f4d
Differential Revision: https://reviews.llvm.org/D83088
Remove immediate operand from SI_ELSE which indicates if EXEC has
been modified. Instead always emit code that handles EXEC and
remove unnecessary instructions during pre-RA optimisation.
This facilitates passes (i.e. SIWholeQuadMode) adding exec mask
manipulation post control flow lowering, and pre control flow
lower passes do not need to be aware of SI_ELSE handling.
Reviewed By: nhaehnle
Differential Revision: https://reviews.llvm.org/D89644
This:
1) Changes the return type of `MappingTraits<T>>::validate` to `std::string`
instead of `StringRef`. It allows to create more complex error messages.
2) It introduces std::vector<std::pair<StringRef, bool>> getEntries():
a new virtual method of Section, which is the base class for all sections.
It returns names of special section specific keys (e.g. "Entries") and flags that
says if them exist in a YAML. The code in validate() uses this list of entries
descriptions to generalize validation.
This approach was discussed in the D89039 thread.
Differential revision: https://reviews.llvm.org/D89463
Remove duplicate code and move things around to make it easier to
add additional optimisations to the pass.
Reviewed By: rampitec
Differential Revision: https://reviews.llvm.org/D89619
The "Size" value returned by SystemZDisassembler::getInstruction is
used by common code even in the case where the routine returns
failure. If that Size value exceeds the number of bytes remaining
in the section, that could cause disassembler crashes.
Fixed by never returning more than the number of bytes remaining.
This reverts commit 38f625d0d1.
This commit contains some holes in its logic and has been causing
issues since it was commited. The idea sounds OK but some cases were not
handled correctly. Instead of trying to fix that up later it is probably
simpler to revert it and work to reimplement it in a more reliable way.
This adds the LLVM IR attribute `mustprogress` as defined in LangRef through D86233. This attribute will be applied to functions with in languages like C++ where forward progress is guaranteed. Functions without this attribute are not required to make progress.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D85393
Create the LLVM / CodeView register mappings for the 32-bit ARM Window targets.
Reviewed By: compnerd
Differential Revision: https://reviews.llvm.org/D89622
For the reproducers in LLDB we want to switch to an "immediate mode"
FileCollector that writes every file encountered straight to disk so we
can generate the actual mapping out-of-process. This patch moves the
interface into a separate base class.
Differential revision: https://reviews.llvm.org/D89742
Fixed wrapping range case & proof methods reduced to constant range
checks to save compile time.
Differential Revision: https://reviews.llvm.org/D89381
IRCE has some overhead for runtime checks and in case number of iteration is small
the overhead can kill the benefit from optimizations.
This CL bases on BlockFrequencyInfo of pre-header and header to estimate the
number of loop iterations. If it is less than irce-min-estimated-iters we do not transform the loop.
Probably it is better to make more complex cost model but for simplicity it seems the be enough.
The usage of BFI is added only for new pass manager and tries to use it efficiently.
Reviewers: ebrevnov, dantrushin, asbirlea, mkazantsev
Reviewed By: mkazantsev
Subscribers: llvm-commits, fhahn
Differential Revision: https://reviews.llvm.org/D89541
From LangRef, FMF contract should not enable reassociating to form
arbitrary contractions. So it should not help rearrange nodes like
(fma (fmul x, c1), c2, y) into (fma x, c1*c2, y).
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D89527
extract_vector_elt will turn type vxi1 into i8, which triggers the assertion fail.
Since we don't really handle vxi1 cases in below code, we can just return from here.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D89096
Measure amount of high-level or fixed-cost operations performed during
building/loading modules and during header search. High-level operations
like building a module or processing a .pcm file are motivated by
previous issues where clang was re-building modules or re-reading .pcm
files unnecessarily. Fixed-cost operations like `stat` calls are tracked
because clang cannot change how long each operation takes but it can
perform fewer of such operations to improve the compile time.
Also tracking such stats over time can help us detect compile-time
regressions. Added stats are more stable than the actual measured
compilation time, so expect the detected regressions to be less noisy.
On relanding drop stats in MemoryBuffer.cpp as their value is pretty low
but affects a lot of clients and many of those aren't interested in
modules and header search.
rdar://problem/55715134
Reviewed By: aprantl, bruno
Differential Revision: https://reviews.llvm.org/D86895
GFX10 enables third addressing mode for flat scratch instructions,
an ST mode. In that mode both register operands are omitted and
only swizzled offset is used in addition to flat_scratch base.
Differential Revision: https://reviews.llvm.org/D89501
Before the change attempt to link libLTO.so against shared
LLVM library failed as:
```
[ 76%] Linking CXX shared library ../../lib/libLTO.so
... /usr/bin/cmake -E cmake_link_script CMakeFiles/LTO.dir/link.txt --verbose=1
c++ -o ...libLTO.so.12git ...ibLLVM-12git.so
ld: CMakeFiles/LTO.dir/lto.cpp.o: in function `llvm::InitializeAllTargetInfos()':
include/llvm/Config/Targets.def:31: undefined reference to `LLVMInitializeVETargetInfo'
```
It happens because on linux llvm build system sets default
symbol visibility to "hidden". The fix is to set visibility
back to "default" for exported APIs with LLVM_EXTERNAL_VISIBILITY.
Bug: https://bugs.llvm.org/show_bug.cgi?id=47847
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89633
The main tricky thing here is forward-declaring the enum:
we have to specify it's underlying data type.
In particular, this avoids the danger of switching over the SCEVTypes,
but actually switching over an integer, and not being notified
when some case is not handled.
I have updated most of such switches to be exaustive and not have
a default case, where it's pretty obvious to be the intent,
however not all of them.
If we switch over an enum, compiler can easily issue a diagnostic
if some case is not handled. However with an if cascade that isn't so.
Experimental evidence suggests new behavior to be superior.
Summary:
Initializer merging generates pretty inefficient code for large allocas
that also happens to trigger an exponential algorithm somewhere in
Machine Instruction Scheduler. See https://bugs.llvm.org/show_bug.cgi?id=47867.
This change adds an upper limit for the alloca size. The default limit
is selected such that worst case size of memtag-generated code is
similar to non-memtag (but because of the ISA quirks, this case is
realized at the different value of alloca size, ex. memset inlining
triggers at sizes below 512, but stack tagging instructions are 2x
shorter, so limit is approx. 256).
We could try harder to emit more compact code with initializer merging,
but that would only affect large, sparsely initialized allocas, and
those are doing fine already.
Reviewers: vitalybuka, pcc
Subscribers: llvm-commits
This enables these transforms for vectors:
(ctpop x) u< 2 -> (x & x-1) == 0
(ctpop x) u> 1 -> (x & x-1) != 0
(ctpop x) == 1 --> (x != 0) && ((x & x-1) == 0)
(ctpop x) != 1 --> (x == 0) || ((x & x-1) != 0)
All enabled if CTPOP isn't Legal. This differs from the scalar
behavior where the first two are done unconditionally and the
last two are done if CTPOP isn't Legal or Custom. The Legal
check produced better results for vectors based on X86's
custom handling. Might be worth re-visiting scalars here.
I disabled the looking through truncate for vectors. The
code that creates new setcc can use the same result VT as the
original setcc even if we truncated the input. That may work
work for most scalars, but definitely wouldn't work for vectors
unless it was a vector of i1.
Fixes or at least improves PR47825
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D89346
We have pseudo instructions we use for bitcasts between these types.
We have them in the load folding table, but not the store folding
table. This adds them there so they can be used for stack spills.
I added an exact size check so that we don't fold when the stack slot
is larger than the GPR. Otherwise the upper bits in the stack slot
would be garbage. That would be fine for Eli's test case in PR47874,
but I'm not sure its safe in general.
A step towards fixing PR47874. Next steps are to change the ADDSSrr_Int
pseudo instructions to use FR32 as the second source register class
instead of VR128. That will keep the coalescer from promoting the
register class of the bitcast instruction which will make the stack
slot 4 bytes instead of 16 bytes.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D89656
These were introduced in r279902 on the grounds that using separate
MUL_U24/MUL_I24 and MULHI_U24/MULHI_I24 nodes would introduce multiple
uses of the operands, which would prevent SimplifyDemandedBits from
simplifying the operands.
This has since been fixed by D24672 "AMDGPU/SI: Use new SimplifyDemandedBits helper for multi-use operations"
No functional change intended. At least it has no effect on lit tests.
Differential Revision: https://reviews.llvm.org/D89706
MULH is often expanded on targets.
This patch removes the isMulhCheaperThanMulShift hook and uses
isOperationLegalOrCustom instead.
Differential Revision: https://reviews.llvm.org/D80485
Fixes a number of stage2 buildbots that were failing when I generalized the m_ConstantInt() logic - that didn't match for pointer types but m_Zero() does......
Allow logging final rewards. A final reward is logged only once, and is
serialized as all-zero values, except for the last one.
Differential Revision: https://reviews.llvm.org/D89626
Scalar cases were already being handled by foldLogOpOfMaskedICmps (so this was dead code), but refactoring to support non-uniform vectors will take some time, so tweak this fold in the meantime.
S_CMP_LG_U64 was added in gfx8 and is guarded by hasScalarCompareEq64().
Rewrite S_CMP_LG_U64 to S_OR_B32 + S_CMP_LG_U32 for targets that
do not support 64-bit scalar compare.
Differential Revision: https://reviews.llvm.org/D89536
Add setcc for fp128 and clean existing ISel patterns. Also add
a regression test.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89683
This broke Chromium's PGO build, it seems because hot-cold-splitting got turned
on unintentionally. See comment on the code review for repro etc.
> This patch adds -f[no-]split-cold-code CC1 options to clang. This allows
> the splitting pass to be toggled on/off. The current method of passing
> `-mllvm -hot-cold-split=true` to clang isn't ideal as it may not compose
> correctly (say, with `-O0` or `-Oz`).
>
> To implement the -fsplit-cold-code option, an attribute is applied to
> functions to indicate that they may be considered for splitting. This
> removes some complexity from the old/new PM pipeline builders, and
> behaves as expected when LTO is enabled.
>
> Co-authored by: Saleem Abdulrasool <compnerd@compnerd.org>
> Differential Revision: https://reviews.llvm.org/D57265
> Reviewed By: Aditya Kumar, Vedant Kumar
> Reviewers: Teresa Johnson, Aditya Kumar, Fedor Sergeev, Philip Pfaffe, Vedant Kumar
This reverts commit 273c299d5d.
Add missing ISel patterns related to select_cc DAG nodes.
Add regression test of all combination of possible scalar types.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89672
Add VBRD/VMV vector instructions. In order to do that, also support
VM512 registers and RV instruction format in MC layer. Also add
regression tests for new instructions.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89641
Add LSV/LVS/LVM/SVM vector instructions and regression tests.
Also update AsmParser to support new format of operands.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89499
Support br_cc instruction comparing fp128 values. Add a br_cc.ll
regression test for all kind of br_cc instructions. And, clean
existing branch regression tests, this time. Clean a brcond.ll
regression test for brcond instruction. Remove mixed branch1.ll
regression test.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89627
Add an ISel pattern for fp128 select instruction and optimize generated
code for other types' select. instructions. Add a regression test also.
Reviewed By: simoll
Differential Revision: https://reviews.llvm.org/D89509
This patch breaks Orc.h up into Orc.h, LLJIT.h and OrcEE.h.
Orc.h contain core Orc utilities.
LLJIT.h contains LLJIT specific types and functions.
OrcEE.h contains types and functions that depend on ExecutionEngine.
The intent is that these headers should match future library divisions: Clients
who only use Orc.h should only need to link againt the Orc core libraries,
clients using LLJIT.h will also need to link against LLVM core, and clients
using OrcEE.h will also have to link against ExecutionEngine.
In addition to breaking up the Orc.h header this patch introduces functions to:
(1) Set the object linking layer creation function on LLJITBuilder.
(2) Create an RTDyldObjectLinkingLayer instance (particularly for use in (1)).
(3) Register JITEventListeners with an RTDyldObjectLinkingLayer.
Together (1), (2) and (3) can be used to force use of RTDyldObjectLinkingLayer
as the underlying JIT linker for LLJIT, rather than the platform default, and
to register event listeners with the RTDyldObjectLinkingLayer.
C API clients can now define a custom definition generator by providing a
callback function (to implement DefinitionGenerator::tryToGenerate) and context
object. All arguments for the DefinitionGenerator::tryToGenerate method have
been given C API counterparts, and the API allows for optionally asynchronous
generation.
Symbol string pool entries are ref counted, but not automatically cleared.
This can cause the size of the pool to grow without bound if it's not
periodically cleared. These functions allow that to be done via the C API.
This patch moves definition generation out from the session lock, instead
running it under a per-dylib generator lock. It also makes the
DefinitionGenerator::tryToGenerate method optionally asynchronous: Generators
are handed an opaque LookupState object which can be captured to stop/restart
the lookup process.
The new scheme provides the following benefits and guarantees:
(1) Queries that do not need to attempt definition generation (because all
requested symbols matched against existing definitions in the JITDylib)
can proceed without being blocked by any running definition generators.
(2) Definition generators can capture the LookupState to continue their work
asynchronously. This allows generators to run for an arbitrary amount of
time without blocking a thread. Definition generators that do not need to
run asynchronously can return without capturing the LookupState to eliminate
unnecessary recursion and improve lookup performance.
(3) Definition generators still do not need to worry about concurrency or
re-entrance: Since they are still run under a (per-dylib) lock, generators
will never be re-entered concurrently, or given overlapping symbol sets to
generate.
Finally, the new system distinguishes between symbols that are candidates for
generation (generation candidates) and symbols that failed to match for a query
(due to symbol visibility). This fixes a bug where an unresolved symbol could
trigger generation of a duplicate definition for an existing hidden symbol.
MaterializationResponsibility, JITDylib, and ExecutionSession collectively
manage the OrcV2 core JIT state. Responsibility for maintaining and
updating this state has previously been spread among these classes, resulting
in implementations that are each non-trivial, but all tightly coupled. This has
in turn made reading the code and reasoning about state update and locking
rules difficult.
The core state model can be simplified by thinking of
MaterializationResponsibility and JITDylib as facets of ExecutionSession. This
commit is the first in a series intended to refactor Core.cpp to reflect this
model. Operations on MaterializationResponsibility and JITDylib will forward to
implementation methods inside ExecutionSession. Raw state will remain with the
original classes, but in most cases will only be modified by the
ExecutionSession.
All existing SCEV cast types operate on integers.
D89456 will add SCEVPtrToIntExpr cast expression type.
I believe this is best for consistency.
Reviewed By: mkazantsev
Differential Revision: https://reviews.llvm.org/D89455
In certain places in llvm/lib/CodeGen we were relying upon the TypeSize
comparison operators when in fact the code was only ever expecting
either scalar values or fixed width vectors. This patch changes a few
functions that were always expecting to work on scalar or fixed width
types:
1. DAGCombiner::mergeTruncStores - deals with scalar integers only.
2. DAGCombiner::ReduceLoadWidth - not valid for vectors.
3. DAGCombiner::createBuildVecShuffle - should only be used for
fixed width vectors.
4. SelectionDAGLegalize::ExpandFCOPYSIGN and
SelectionDAGLegalize::getSignAsIntValue - only work on scalars.
Differential Revision: https://reviews.llvm.org/D88562
In certain places in llvm/lib/CodeGen we were relying upon the TypeSize
comparison operators when in fact the code was only ever expecting
either scalar values or fixed width vectors. I've changed some of these
places to use the equivalent scalar operator.
Differential Revision: https://reviews.llvm.org/D88482
In certain places in the code we can never end up in a situation where
we're mixing fixed width and scalable vector types. For example,
we can't have truncations and extends that change the lane count. Also,
in other places such as GenWidenVectorStores and GenWidenVectorLoads we
know from the behaviour of FindMemType that we can never choose a vector
type with a different scalable property.
In various places I have used EVT::bitsXY functions instead of
TypeSize::isKnownXY, where it probably makes sense to keep an assert
that scalable properties match.
Differential Revision: https://reviews.llvm.org/D88654
In many places in the AArch64 backend we are comparing TypeSize objects,
but in fact we are only ever expecting fixed width types. I've changed
all such comparisons to use their integer equivalents by replacing
calls to getSizeInBits() with getFixedSizeInBits(), etc.
Differential Revision: https://reviews.llvm.org/D89116
This patch updates the Kaleidoscope and BuildingAJIT tutorial series (chapter
1-4) to OrcV2. Chapter 5 of the BuildingAJIT series is removed -- it will be
re-instated once we have in-tree support for out-of-process JITing.
This patch only updates the tutorial code, not the text. Patches welcome for
that, otherwise I will try to update it in a few weeks.
This patch introduces new APIs to support resource tracking and removal in Orc.
It is intended as a thread-safe generalization of the removeModule concept from
OrcV1.
Clients can now create ResourceTracker objects (using
JITDylib::createResourceTracker) to track resources for each MaterializationUnit
(code, data, aliases, absolute symbols, etc.) added to the JIT. Every
MaterializationUnit will be associated with a ResourceTracker, and
ResourceTrackers can be re-used for multiple MaterializationUnits. Each JITDylib
has a default ResourceTracker that will be used for MaterializationUnits added
to that JITDylib if no ResourceTracker is explicitly specified.
Two operations can be performed on ResourceTrackers: transferTo and remove. The
transferTo operation transfers tracking of the resources to a different
ResourceTracker object, allowing ResourceTrackers to be merged to reduce
administrative overhead (the source tracker is invalidated in the process). The
remove operation removes all resources associated with a ResourceTracker,
including any symbols defined by MaterializationUnits associated with the
tracker, and also invalidates the tracker. These operations are thread safe, and
should work regardless of the the state of the MaterializationUnits. In the case
of resource transfer any existing resources associated with the source tracker
will be transferred to the destination tracker, and all future resources for
those units will be automatically associated with the destination tracker. In
the case of resource removal all already-allocated resources will be
deallocated, any if any program representations associated with the tracker have
not been compiled yet they will be destroyed. If any program representations are
currently being compiled then they will be prevented from completing: their
MaterializationResponsibility will return errors on any attempt to update the
JIT state.
Clients (usually Layer writers) wishing to track resources can implement the
ResourceManager API to receive notifications when ResourceTrackers are
transferred or removed. The MaterializationResponsibility::withResourceKeyDo
method can be used to create associations between the key for a ResourceTracker
and an allocated resource in a thread-safe way.
RTDyldObjectLinkingLayer and ObjectLinkingLayer are updated to use the
ResourceManager API to enable tracking and removal of memory allocated by the
JIT linker.
The new JITDylib::clear method can be used to trigger removal of every
ResourceTracker associated with the JITDylib (note that this will only
remove resources for the JITDylib, it does not run static destructors).
This patch includes unit tests showing basic usage. A follow-up patch will
update the Kaleidoscope and BuildingAJIT tutorial series to OrcV2 and will
use this API to release code associated with anonymous expressions.
This removes all legacy layers, legacy utilities, the old Orc C bindings,
OrcMCJITReplacement, and OrcMCJITReplacement regression tests.
ExecutionEngine and MCJIT are not affected by this change.
Format specifiers of incorrect length are replaced with format specifier
macros from `<cinttypes>` matching the typedefs used to declare the type
of the value being printed.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D89637
isNoopIntrinsic returns true for some intrinsics that are modeled in
MemorySSA but do not actually read or write any memory and do not block
DSE. Such intrinsics should not be considered as read-clobbers.
This pattern was repeated a few times, and for some reason always
using insert or try_emplace, even though we know in advance that
we're looking for an existing entry and not trying to create a
new one.
loadiwkey and aesenc128kl share the same opcode but one is memory
and one is register. But they're behavior is quite different. We
were crashing because one has an output register and one doesn't
and the backend couldn't account for that. But since they aren't
foldable we can just add NotMemoryFoldable so they won't be looked at.
It's not pretty, but probably better than modelling it
as an opaque SCEVUnknown, i guess.
It is relevant e.g. for the loop that was brought up in
https://bugs.llvm.org/show_bug.cgi?id=46786#c26
as an example of what we'd be able to better analyze
once SCEV handles `ptrtoint` (D89456).
But as it is evident, even if we deal with `ptrtoint` there,
we also fail to model such an `ashr`.
Also, modeling of mul-of-exact-shr/div could use improvement.
As per alive2:
https://alive2.llvm.org/ce/z/tnfZKd
```
define i8 @src(i8 %0) {
%2 = ashr exact i8 %0, 4
ret i8 %2
}
declare i8 @llvm.abs(i8, i1)
declare i8 @llvm.smin(i8, i8)
declare i8 @llvm.smax(i8, i8)
define i8 @tgt(i8 %x) {
%abs_x = call i8 @llvm.abs(i8 %x, i1 false)
%div = udiv exact i8 %abs_x, 16
%t0 = call i8 @llvm.smax(i8 %x, i8 -1)
%t1 = call i8 @llvm.smin(i8 %t0, i8 1)
%r = mul nsw i8 %div, %t1
ret i8 %r
}
```
Transformation seems to be correct!
This adds some basic costs for MVE reductions - currently just costing
the simple legal add vectors as a single MVE instruction. More complex
costing can be added in the future when the framework more readily
allows it.
Differential Revision: https://reviews.llvm.org/D88980
This adds a very basic cost for active_lane_mask under MVE - making the
assumption that they will be free and then apologizing for that in a
comment.
In reality they may either be free (by being nicely folded into a tail
predicated loop), cost the same as a VCTP or be expanded into vdup's,
adds and cmp's. It is difficult to detect the difference from a single
getIntrinsicInstrCost call, so makes the assumption that the vectorizer
is adding them, and only added them where it makes sense.
We may need to change this in the future to better model predicate costs
in the vectorizer, especially at -Os or non-tail predicated loops. The
vectorizer currently does not query the cost of these instructions but
that will change in the future and a zero cost there probably makes the
most sense at the moment.
Differential Revision: https://reviews.llvm.org/D88989
This patch adds metadata !noundef and makes load instructions can optionally have it.
A load with !noundef always return a well-defined value (has no undef bit or isn't poison).
If the loaded value isn't well defined, the behavior is undefined.
This metadata can be used to encode the assumption from C/C++ that certain reads of variables should have well-defined values.
It is helpful for optimizing freeze instructions away, because freeze can be removed when its operand has well-defined value, and showing that a load from arbitrary location is well-defined is usually hard otherwise.
The same information can be encoded with llvm.assume with operand bundle; using metadata is chosen because I wasn't sure whether code motion can be freely done when llvm.assume is inserted from clang instead.
The existing codebase already is stripping unknown metadata when doing code motion, so using metadata is UB-safe as well.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D89050
LLVM rejects DWARF operator DW_OP_over. This DWARF operator is needed
for Flang to support assumed rank array.
Summary:
Currently LLVM rejects DWARF operator DW_OP_over. Below error is
produced when llvm finds this operator.
[..]
invalid expression
!DIExpression(151, 20, 16, 48, 30, 35, 80, 34, 6)
warning: ignoring invalid debug info in over.ll
[..]
There were some parts missing in support of this operator, which are
now completed.
Testing
-added a unit testcase
-check-debuginfo
-check-llvm
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D89208
As requested in D89346. This allows us to add some early outs.
I reordered some checks a little bit to make the more common bail outs happen earlier. Like checking opcode before checking hasOneUse. And I moved the bit width check to make sure it was safe to look through a truncate to the spot where we look through truncates instead of after.
Reviewed By: spatel
Differential Revision: https://reviews.llvm.org/D89494
This lets external consumers customize the output, similar to how
AssemblyAnnotationWriter lets the caller define callbacks when printing
IR. The array of handlers already existed, this just cleans up the code
so that it can be exposed publically.
Differential Revision: https://reviews.llvm.org/D74158
We can not bitcast pointers across different address spaces, and VectorCombine
should be careful when it attempts to find the original source of the loaded
data.
Differential Revision: https://reviews.llvm.org/D89577
Aborts if we hit the max devirtualization iteration.
Will be useful for testing that changes to devirtualization don't cause
devirtualization to repeat passes more times than necessary.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D89519
If instructions were removed in peephole passes after the hazard recognizer was
run it is possible that new hazards could be introduced.
Fixes: SWDEV-253090
Reviewed By: rampitec, arsenm
Differential Revision: https://reviews.llvm.org/D89077
NEON is pretty limited in it's reduction support. As a first step add some
basic rules for the legal types we can select.
Differential Revision: https://reviews.llvm.org/D89070
In order to prevent the ExpandReductions pass from expanding some intrinsics
before they get to codegen, I had to add a -disable-expand-reductions flag
for testing purposes.
Differential Revision: https://reviews.llvm.org/D89028
If you use -stop-after or similar options, llc will normally print MIR.
This patch checks for -filetype=null as a special case to disable MIR
printing. As the comment says, "The Null output is intended for use for
performance analysis ...", and I found this useful for timing a subset
of the passes that llc runs without the significant overhead of printing
MIR just to send it to /dev/null.
Differential Revision: https://reviews.llvm.org/D89476
This would end up killing part of the result super-register, resulting
in a verifier error on a later use of the overlapping registers. We
could add kills of any non-aliasing registers, but we should be moving
away from relying on kill flags.