The insertLoop() API is only used to add new loops, and has confusing
ownership semantics. Simplify it by replacing it with addLoop().
llvm-svn: 251064
Summary: Currently SimplifyResume can convert an invoke instruction to a call instruction if its landing pad is trivial. In practice we could have several invoke instructions with trivial landing pads and share a common rethrow block, and in the common rethrow block, all the landing pads join to a phi node. The patch extends SimplifyResume to check the phi of landing pad and their incoming blocks. If any of them is trivial, remove it from the phi node and convert the invoke instruction to a call instruction.
Reviewers: hfinkel, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13718
llvm-svn: 251061
This is a clean up patch that defines instr prof section and variable
name prefixes in a common header with access helper functions.
clang FE change will be done as a follow up once this patch is in.
Differential Revision: http://reviews.llvm.org/D13919
llvm-svn: 251058
As an invariant, BasicBlocks cannot be empty when passed to a transform.
This is not the case for MachineBasicBlocks and the Sink pass was ported
from the MachineSink pass which would explain the check's existence.
llvm-svn: 251057
* Don't instrument promotable dynamic allocas:
We already have a test that checks that promotable dynamic allocas are
ignored, as well as static promotable allocas. Make sure this test will
still pass if/when we enable dynamic alloca instrumentation by default.
* Handle lifetime intrinsics before handling dynamic allocas:
lifetime intrinsics may refer to dynamic allocas, so we need to emit
instrumentation before these dynamic allocas would be replaced.
Differential Revision: http://reviews.llvm.org/D12704
llvm-svn: 251045
SimplifyTerminatorOnSelect didn't consider the possibility that the
condition might be related to one of PHI nodes.
This fixes PR25267.
llvm-svn: 250922
In some cases (as illustrated in the unittest), lineno can be less than the heade_lineno because the function body are included from some other files. In this case, offset will be negative. This patch makes clang still able to match the profile to IR in this situation.
http://reviews.llvm.org/D13914
llvm-svn: 250873
It is now possible to infer intrinsic modref behaviour purely from intrinsic attributes.
This change will allow to completely remove GET_INTRINSIC_MODREF_BEHAVIOR table.
Differential Revision: http://reviews.llvm.org/D13907
llvm-svn: 250860
Summary: In r231241, TargetLibraryInfoWrapperPass was added to
`getAnalysisUsage` for `AddressSanitizer`, but the corresponding
`INITIALIZE_PASS_DEPENDENCY` was not added.
Reviewers: dvyukov, chandlerc, kcc
Subscribers: kcc, llvm-commits
Differential Revision: http://reviews.llvm.org/D13629
llvm-svn: 250813
`normalizeForInvokeSafepoint` in RewriteStatepointsForGC.cpp, as it is
written today, deals with `gc.relocate` and `gc.result` uses of a
statepoint equally well. This change documents this fact and adds a
test case.
There is no functional change here -- only documentation of existing
functionality.
llvm-svn: 250784
Allow LLVM to optimize the sequence like the following:
%inc = add nsw i32 %i, 1
%cmp = icmp slt %n, %inc
into:
%cmp = icmp sle i32 %n, %i
The case is not handled previously due to the complexity of compuation of %n.
Hence, LLVM cannot swap operands of icmp accordingly.
llvm-svn: 250746
Besides the usual, I finally added an overload to
`BasicBlock::splitBasicBlock()` that accepts an `Instruction*` instead
of `BasicBlock::iterator`. Someone can go back and remove this overload
later (after updating the callers I'm going to skip going forward), but
the most common call seems to be
`BB->splitBasicBlock(BB->getTerminator(), ...)` and I'm not sure it's
better to add `->getIterator()` to every one than have the overload.
It's pretty hard to get the usage wrong.
llvm-svn: 250745
Originally I planned to use the same interface for masked gather/scatter and set isConsecutive to "false" in this case.
Now I'm implementing masked gather/scatter and see that the interface is inconvenient. I want to add interfaces isLegalMaskedGather() / isLegalMaskedScatter() instead of using the "Consecutive" parameter in the existing interfaces.
Differential Revision: http://reviews.llvm.org/D13850
llvm-svn: 250686
This patch improves support for combining the SSE4A EXTRQ(I) and INSERTQ(I) intrinsics:
1 - Converts INSERTQ/EXTRQ calls to INSERTQI/EXTRQI if the 'bit index' and 'length' operands are constant
2 - Converts INSERTQI/EXTRQI calls to shufflevector if the bit index/length are both byte aligned (we can already lower shuffles to INSERTQI/EXTRQI if its useful)
3 - Constant folding support
4 - Add zeroinitializer handling
Differential Revision: http://reviews.llvm.org/D13348
llvm-svn: 250609
The `"statepoint-id"` and `"statepoint-num-patch-bytes"` attributes are
used solely to determine properties of the `gc.statepoint` being
created. Once the `gc.statepoint` is in place, these should be removed.
llvm-svn: 250491
Summary:
This is a step towards using operand bundles to carry deopt state till
RewriteStatepointsForGC. The change adds a flag to
RewriteStatepointsForGC that teaches it to pick up deopt state from a
`"deopt"` operand bundle attached to the `call` or `invoke` it is
wrapping.
The command line flag added, `-rs4gc-use-deopt-bundles`, will only exist
for a short while. Once we are able to pipe deopt bundle state through
the full optimization pipeline without problems, we will "constant fold"
`-rs4gc-use-deopt-bundles` to `true`.
Reviewers: swaroop.sridhar, reames
Subscribers: llvm-commits, sanjoy
Differential Revision: http://reviews.llvm.org/D13372
llvm-svn: 250489
Summary:
`cloneArithmeticIVUser` currently trips over expression like `add %iv,
-1` when `%iv` is being zero extended -- it tries to construct the
widened use as `add %iv.zext, zext(-1)` and (correctly) fails to prove
equivalence to `zext(add %iv, -1)` (here the SCEV for `%iv` is
`{1,+,1}`).
This change teaches `IndVars` to try sign extending the non-IV operand
if that makes the newly constructed IV use equivalent to the widened
narrow IV use.
Reviewers: atrick, hfinkel, reames
Subscribers: sanjoy, llvm-commits
Differential Revision: http://reviews.llvm.org/D13717
llvm-svn: 250483
Summary:
This NFC splitting is intended to make a later diff easier to follow.
It just tail duplicates `cloneIVUser` into `cloneArithmeticIVUser` and
`cloneBitwiseIVUser`.
Reviewers: atrick, hfinkel, reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D13716
llvm-svn: 250481
Android libc provides a fixed TLS slot for the unsafe stack pointer,
and this change implements direct access to that slot on AArch64 via
__builtin_thread_pointer() + offset.
This change also moves more code into TargetLowering and its
target-specific subclasses to get rid of target-specific codegen
in SafeStackPass.
This change does not touch the ARM backend because ARM lowers
builting_thread_pointer as aeabi_read_tp, which is not available
on Android.
llvm-svn: 250456
Turns out this approach is buggy. In discussion about follow on work, Sanjoy pointed out that we could be subject to circular logic problems.
Consider:
if (i u< L) leave()
if ((i + 1) u< L) leave()
print(a[i] + a[i+1])
If we know that L is less than UINT_MAX, we could possible prove (in a control dependent way) that i + 1 does not overflow. This gives us:
if (i u< L) leave()
if ((i +nuw 1) u< L) leave()
print(a[i] + a[i+1])
If we now do the transform this patch proposed, we end up with:
if ((i +nuw 1) u< L) leave_appropriately()
print(a[i] + a[i+1])
That would be a miscompile when i==-1. The problem here is that the control dependent nuw bits got used to prove something about the first condition. That's obviously invalid.
This won't happen today, but since I plan to enhance LVI/CVP with exactly that transform at some point in the not too distant future...
llvm-svn: 250430
This adjusts all integers in the reader/writer to reflect the types
stored on profile files. They should all be unsigned 32-bit or 64-bit
values. Changed all associated internal types to be uint32_t or
uint64_t.
The only place that needed some adjustments is in the sample profile
transformation. Altough the weight read from the profile are 64-bit
values, the internal API for branch weights only accepts 32-bit values.
The pass now saturates weights that overflow uint32_t.
llvm-svn: 250427
With r250345 and r250343, we start to observe the following failure
when bootstrap clang with lto and pgo:
PHI node entries do not match predecessors!
%.sroa.029.3.i = phi %"class.llvm::SDNode.13298"* [ null, %30953 ], [ null, %31017 ], [ null, %30998 ], [ null, %_ZN4llvm8dyn_castINS_14ConstantSDNodeENS_7SDValueEEENS_10cast_rettyIT_T0_E8ret_typeERS5_.exit.i.1804 ], [ null, %30975 ], [ null, %30991 ], [ null, %_ZNK4llvm3EVT13getScalarTypeEv.exit.i.1812 ], [ %..sroa.029.0.i, %_ZN4llvm11SmallVectorIiLj8EED1Ev.exit.i.1826 ], !dbg !451895
label %30998
label %_ZNK4llvm3EVTeqES0_.exit19.thread.i
LLVM ERROR: Broken function found, compilation aborted!
I will re-commit this if the bot does not recover.
llvm-svn: 250366
Currently in JumpThreading pass, the branch weight metadata is not updated after CFG modification. Consider the jump threading on PredBB, BB, and SuccBB. After jump threading, the weight on BB->SuccBB should be adjusted as some of it is contributed by the edge PredBB->BB, which doesn't exist anymore. This patch tries to update the edge weight in metadata on BB->SuccBB by scaling it by 1 - Freq(PredBB->BB) / Freq(BB->SuccBB).
This is the third attempt to submit this patch, while the first two led to failures in some FDO tests. After investigation, it is the edge weight normalization that caused those failures. In this patch the edge weight normalization is fixed so that there is no zero weight in the output and the sum of all weights can fit in 32-bit integer. Several unit tests are added.
Differential revision: http://reviews.llvm.org/D10979
llvm-svn: 250345
If we have a series of branches which are all unlikely to fail, we can possibly combine them into a single check on the fastpath combined with a bit of dispatch logic on the slowpath. We don't want to do this unconditionally since it requires speculating instructions past a branch, but if the profiling metadata on the branch indicates profitability, this can reduce the number of checks needed along the fast path.
The canonical example this is trying to handle is removing the second bounds check implied by the Java code: a[i] + a[i+1]. Note that it can currently only do so for really simple conditions and the values of a[i] can't be used anywhere except in the addition. (i.e. the load has to have been sunk already and not prevent speculation.) I plan on extending this transform over the next few days to handle alternate sequences.
Differential Revision: http://reviews.llvm.org/D13070
llvm-svn: 250343
We forgot to append the terminatepad's arguments which resulted in us
treating the old terminatepad as an argument to the new terminatepad
causing us to crash immediately. Instead, add the old terminatepad's
arguments to the new terminatepad.
This fixes PR25155.
llvm-svn: 250234
Remove remaining `ilist_iterator` implicit conversions from
LLVMScalarOpts.
This change exposed some scary behaviour in
lib/Transforms/Scalar/SCCP.cpp around line 1770. This patch changes a
call from `Function::begin()` to `&Function::front()`, since the return
was immediately being passed into another function that takes a
`Function*`. `Function::front()` started to assert, since the function
was empty. Note that `Function::end()` does not point at a legal
`Function*` -- it points at an `ilist_half_node` -- so the other
function was getting garbage before. (I added the missing check for
`Function::isDeclaration()`.)
Otherwise, no functionality change intended.
llvm-svn: 250211
Currently in JumpThreading pass, the branch weight metadata is not updated after CFG modification. Consider the jump threading on PredBB, BB, and SuccBB. After jump threading, the weight on BB->SuccBB should be adjusted as some of it is contributed by the edge PredBB->BB, which doesn't exist anymore. This patch tries to update the edge weight in metadata on BB->SuccBB by scaling it by 1 - Freq(PredBB->BB) / Freq(BB->SuccBB).
Differential revision: http://reviews.llvm.org/D10979
llvm-svn: 250204
On Linux, the profile runtime can use __start_SECTNAME and __stop_SECTNAME
symbols defined by the linker to locate the start and end location of
a named section (with C name). This eliminates the need for instrumented
binary to call __llvm_profile_register_function during start-up time.
llvm-svn: 250199