Previously, __weak was silently accepted and ignored in MRC mode.
That makes this a potentially source-breaking change that we have to
roll out cautiously. Accordingly, for the time being, actual support
for __weak references in MRC is experimental, and the compiler will
reject attempts to actually form such references. The intent is to
eventually enable the feature by default in all non-GC modes.
(It is, of course, incompatible with ObjC GC's interpretation of
__weak.)
If you like, you can enable this feature with
-Xclang -fobjc-weak
but like any -Xclang option, this option may be removed at any point,
e.g. if/when it is eventually enabled by default.
This patch also enables the use of the ARC __unsafe_unretained qualifier
in MRC. Unlike __weak, this is being enabled immediately. Since
variables are essentially __unsafe_unretained by default in MRC,
the only practical uses are (1) communication and (2) changing the
default behavior of by-value block capture.
As an implementation matter, this means that the ObjC ownership
qualifiers may appear in any ObjC language mode, and so this patch
removes a number of checks for getLangOpts().ObjCAutoRefCount
that were guarding the processing of these qualifiers. I don't
expect this to be a significant drain on performance; it may even
be faster to just check for these qualifiers directly on a type
(since it's probably in a register anyway) than to do N dependent
loads to grab the LangOptions.
rdar://9674298
llvm-svn: 251041
We got this right for Itanium but not MSVC because CGRecordLayoutBuilder
was checking if the base's size was zero when it should have been
checking the non-virtual size.
This fixes PR21040.
llvm-svn: 251036
This patch adds hashes to the plist and html output to be able to identfy bugs
for suppressing false positives or diff results against a baseline. This hash
aims to be resilient for code evolution and is usable to identify bugs in two
different snapshots of the same software. One missing piece however is a
permanent unique identifier of the checker that produces the warning. Once that
issue is resolved, the hashes generated are going to change. Until that point
this feature is marked experimental, but it is suitable for early adoption.
Differential Revision: http://reviews.llvm.org/D10305
Original patch by: Bence Babati!
llvm-svn: 251011
We believed that internal linkage variables at global scope which are
not variable template specializations did not have to be mangled.
However, static anonymous unions have no identifier and therefore must
be mangled.
This fixes PR18204.
llvm-svn: 250997
This is almost entirely a matter of just flipping a switch. 99% of
the runtime support is available all the way back to when it was
implemented in the non-fragile runtime, i.e. in Lion. However,
fragile runtimes do not recognize ARC-style ivar layout strings,
which means that accessing __strong or __weak ivars reflectively
(e.g. via object_setIvar) will end up accessing the ivar as if it
were __unsafe_unretained. Therefore, when using reflective
technologies like KVC, be sure that your paths always refer to a
property.
rdar://23209307
llvm-svn: 250955
The ELF symbol visibilities are:
- internal: Not visibile across DSOs, cannot pass address across DSOs
- hidden: Not visibile across DSOs, can be called indirectly
- default: Usually visible across DSOs, possibly interposable
- protected: Visible across DSOs, not interposable
LLVM only supports the latter 3 visibilities. Internal visibility is in
theory useful, as it allows you to assume that the caller is maintaining
a PIC register for you in %ebx, or in some other pre-arranged location.
As far as LLVM is concerned, this isn't worth the trouble. Using hidden
visibility is always correct, so we can just do that.
Resolves PR9183.
llvm-svn: 250954
Since r249754 MemorySanitizer should work equally well for PIE and
non-PIE executables on Linux/x86_64.
Beware, with this change -fsanitize=memory no longer adds implicit
-fPIE -pie compiler/linker flags on Linux/x86_64.
This is a re-land of r250941, limited to Linux/x86_64 + a very minor
refactoring in SanitizerArgs.
llvm-svn: 250949
Since r249754 MemorySanitizer should work equally well for PIE and
non-PIE executables.
Beware, with this change -fsanitize=memory no longer adds implicit
-fPIE -pie compiler/linker flags, unless the target defaults to PIE.
llvm-svn: 250941
Specifically, handle under-aligned object references (by explicitly
ignoring them, because this just isn't representable in the format;
yes, this means that GC silently ignores such references), descend
into anonymous structs and unions, stop classifying fields of
pointer-to-strong/weak type as strong/weak in ARC mode, and emit
skips to cover the entirety of block layouts in GC mode. As a
cleanup, extract this code into a helper class, avoid a number of
unnecessary copies and layout queries, generate skips implicitly
instead of explicitly tracking them, and clarify the bitmap-creation
logic.
llvm-svn: 250919
The logic for parsing FP capabilities to set __ARM_FP was mistakenly removing
the Half-Precision capability when handling fp-only-sp resulting in a value
of 0x4. Section 6.5.1 of ACLE states that for such FP architectures the value
should be 0x6
llvm-svn: 250888
headers. If those headers end up being textually included twice into the same
module, we get ambiguity errors.
Work around this by downgrading the ambiguity error to a warning if multiple
identical internal-linkage functions appear in an overload set, and just pick
one of those functions as the lookup result.
llvm-svn: 250884
This time, I went with the first approach from
http://reviews.llvm.org/D6700, where clang actually attempts to form an
implicit member reference from an UnresolvedLookupExpr. We know that
there are only two possible outcomes at this point, a DeclRefExpr of the
FieldDecl or an error, but its safer to reuse the existing machinery for
this.
llvm-svn: 250856
Microsoft's ATL headers make use of this MSVC extension, add support for
it and issue a diagnostic under -Wmicrosoft-exception-spec.
This fixes PR25265.
llvm-svn: 250854
Clang will now accept this valid C++11 code:
struct A { int field; };
struct B : A {
using A::field;
enum { TheSize = sizeof(field) };
};
Previously we would classify the 'field' reference as something other
than a field, and then forget to apply the C++11 rule to allow
non-static data member references in unevaluated contexts.
This usually arises in class templates that want to reference fields of
a dependent base in an unevaluated context outside of an instance
method. Such contexts do not allow references to 'this', so the only way
to access the field is with a using decl and an implicit member
reference.
llvm-svn: 250839
According to the Intel documentation, the mask operand of a maskload and
maskstore intrinsics is always a vector of packed integer/long integer values.
This patch introduces the following two changes:
1. It fixes the avx maskload/store intrinsic definitions in avxintrin.h.
2. It changes BuiltinsX86.def to match the correct gcc definitions for avx
maskload/store (see D13861 for more details).
Differential Revision: http://reviews.llvm.org/D13861
llvm-svn: 250816
Currently debug info for types used in explicit cast only is not emitted. It happened after a patch for better alignment handling. This patch fixes this bug.
Differential Revision: http://reviews.llvm.org/D13582
llvm-svn: 250795
This reverts commit r250592.
It has issues around unevaluated contexts, like this:
template <class T> struct A { T i; };
template <class T>
struct B : A<T> {
using A<T>::i;
typedef decltype(i) U;
};
template struct B<int>;
llvm-svn: 250774
Out-of-line definitions of static data members which have an inline
initializer must get GVA_DiscardableODR linkage instead of
GVA_StrongExternal linkage.
MSVC 2013's behavior is different with respect to this and would cause
link errors if one TU provided a definition while another did not.
MSVC 2015 fixed this bug, making this OK. Note that the 2015 behavior
is always compatible with 2013: it never produces a strong definition.
This essentially reverts r237787.
llvm-svn: 250757
This makes the format tests look more like most other FileCheck tests in clang.
The multiple-inputs tests still use temp files, to make sure that the file
input code in clang-format stays tested.
Stop stripping out the comment lines in style-on-command-line.cpp as they don't
get in the way and it makes the test simpler. Also remove 2>&1s on the tests in
that file that don't need it.
http://reviews.llvm.org/D13852
llvm-svn: 250706
The Intel MCU psABI requires floating-point values to be passed in-reg.
This makes the x86-32 ABI code respect "-mfloat-abi soft" and generate float inreg arguments.
Differential Revision: http://reviews.llvm.org/D13554
llvm-svn: 250689
Summary:
Similar to rL248426 (which was a followup to rL248379 and rL248424), add the
required libraries for OpenMP on the linker command line, and update the test
case.
Reviewers: emaste, theraven, joerg
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D13822
llvm-svn: 250657
During the initial template parse for this code, 'member' is unresolved
and we don't know anything about it:
struct A { int member };
template <typename T>
struct B : public T {
using T::member;
static void f() {
(void)member; // Could be static or non-static.
}
};
template class B<A>;
The pattern declaration contains an UnresolvedLookupExpr rather than an
UnresolvedMemberExpr because `f` is static, and `member` should never be
a field. However, if the code is invalid, it may become a field, in
which case we should diagnose it.
Reviewers: rjmccall, rsmith
Differential Revision: http://reviews.llvm.org/D6700
llvm-svn: 250592
via -fmodule-file= to be turned off; in that case, just include the relevant
files textually. This allows module files to be unconditionally passed to all
compile actions via CXXFLAGS, and to be ignored for rules that specify custom
incompatible flags.
llvm-svn: 250577
r246877 made __builtin_object_size substantially more aggressive with
unknown bases if Type=1 or Type=3, which causes issues when we encounter
code like this:
struct Foo {
int a;
char str[1];
};
const char str[] = "Hello, World!";
struct Foo *f = (struct Foo *)malloc(sizeof(*f) + strlen(str));
strcpy(&f->str, str);
__builtin_object_size(&f->str, 1) would hand back 1, which is
technically correct given the type of Foo, but the type of Foo lies to
us about how many bytes are available in this case.
This patch adds support for this "writing off the end" idiom -- we now
answer conservatively when we're given the address of the very last
member in a struct.
Differential Revision: http://reviews.llvm.org/D12169
llvm-svn: 250488
Previously, our logic when taking the address of an overloaded function
would not consider enable_if attributes, so long as all of the enable_if
conditions on a given candidate were true. So, two functions with
identical signatures (one with enable_if attributes, the other without),
would be considered equally good overloads. If we were calling the
function instead of taking its address, then the function with enable_if
attributes would be preferred.
This patch makes us prefer the candidate with enable_if regardless of if
we're calling or taking the address of an overloaded function.
Differential Revision: http://reviews.llvm.org/D13795
llvm-svn: 250486