C++ handle anonymous structs/unions in the same way. Addresses several
bugs:
<rdar://problem/6259534>
<rdar://problem/6481130>
<rdar://problem/6483159>
The test case in PR clang/1750 now passes with -fsyntax-only, but
CodeGen for inline assembler still fails.
llvm-svn: 62112
or enum to be outside that struct, union, or enum. Fixes several
regressions:
<rdar://problem/6487662>
<rdar://problem/6487669>
<rdar://problem/6487684>
<rdar://problem/6487702>
PR clang/3305
PR clang/3312
There is still some work to do in Objective-C++, but this requires
that each of the Objective-C entities (interfaces, implementations,
etc.) to be introduced into the context stack with
PushDeclContext/PopDeclContext. This will be a separate fix, later.
llvm-svn: 62091
that is neither a definition nor a forward declaration and where X has
not yet been declared as a tag, introduce a declaration
into the appropriate scope (which is likely *not* to be the current
scope). The rules for the placement of the declaration differ slightly
in C and C++, so we implement both and test the various corner
cases. This implementation isn't 100% correct due to some lingering
issues with the function prototype scope (for a function parameter
list) not being the same scope as the scope of the function
definition. Testcase is FIXME'd; this probably isn't an important issue.
Addresses <rdar://problem/6484805>.
llvm-svn: 62014
introduce a Scope for the body of a tag. This reduces the number of
semantic differences between C and C++ structs and unions, and will
help with other features (e.g., anonymous unions) in C. Some important
points:
- Fields are now in the "member" namespace (IDNS_Member), to keep
them separate from tags and ordinary names in C. See the new test
in Sema/member-reference.c for an example of why this matters. In
C++, ordinary and member name lookup will find members in both the
ordinary and member namespace, so the difference between
IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but
only in C++!).
- We always introduce a Scope and push a DeclContext when we're
defining a tag, in both C and C++. Previously, we had different
actions and different Scope/CurContext behavior for enums, C
structs/unions, and C++ structs/unions/classes. Now, it's one pair
of actions. (Yay!)
There's still some fuzziness in the handling of struct/union/enum
definitions within other struct/union/enum definitions in C. We'll
need to do some more cleanup to eliminate some reliance on CurContext
before we can solve this issue for real. What we want is for something
like this:
struct X {
struct T { int x; } t;
};
to introduce T into translation unit scope (placing it at the
appropriate point in the IdentifierResolver chain, too), but it should
still have struct X as its lexical declaration
context. PushOnScopeChains isn't smart enough to do that yet, though,
so there's a FIXME test in nested-redef.c
llvm-svn: 61940
- Simplify ParseDeclCXX to use early exit on error instead of nesting.
- Change ParseDeclCXX to using the 'skip on error' form of ExpectAndConsume.
- If we don't see the ; in a using directive, still call the action, for
hopefully better error recovery.
llvm-svn: 61801
Make C++ classes track the POD property (C++ [class]p4)
Track the existence of a copy assignment operator.
Implicitly declare the copy assignment operator if none is provided.
Implement most of the parsing job for the G++ type traits extension.
Fully implement the low-hanging fruit of the type traits:
__is_pod: Whether a type is a POD.
__is_class: Whether a type is a (non-union) class.
__is_union: Whether a type is a union.
__is_enum: Whether a type is an enum.
__is_polymorphic: Whether a type is polymorphic (C++ [class.virtual]p1).
llvm-svn: 61746
DeclContexts whose members are visible from enclosing DeclContexts up
to (and including) the innermost enclosing non-transparent
DeclContexts. Transparent DeclContexts unify the mechanism to be used
for various language features, including C enumerations, anonymous
unions, C++0x inline namespaces, and C++ linkage
specifications. Please refer to the documentation in the Clang
internals manual for more information.
Only enumerations and linkage specifications currently use transparent
DeclContexts.
Still to do: use transparent DeclContexts to implement anonymous
unions and GCC's anonymous structs extension, and, later, the C++0x
features. We also need to tighten up the DeclContext/ScopedDecl link
to ensure that every ScopedDecl is in a single DeclContext, which
will ensure that we can then enforce ownership and reduce the memory
footprint of DeclContext.
llvm-svn: 61735
verified to be simple type specifiers, so there is no need for it
to call TryAnnotateTypeOrScopeToken.
Make MaybeParseCXXScopeSpecifier reject ::new and ::delete with a
hard error now that it may never be transitively called in a
context where these are legal. This allows me to start
disentangling things more.
llvm-svn: 61659
ParseCastExpression into the switch. This gets it out of the hot
path through ParseCastExpression for all the non-identifier and
non-:: tokens.
llvm-svn: 61643
semantics and improve our handling of default arguments. Specifically,
we follow this order:
- As soon as the see the '}' in the class definition, the class is
complete and we add any implicit declarations (default constructor,
copy constructor, etc.) to the class.
- If there are any default function arguments, parse them
- If there were any inline member function definitions, parse them
As part of this change, we now keep track of the the fact that we've
seen unparsed default function arguments within the AST. See the new
ParmVarDecl::hasUnparsedDefaultArg member. This allows us to properly
cope with calls inside default function arguments to other functions
where we're making use of the default arguments.
Made some C++ error messages regarding failed initializations more
specific.
llvm-svn: 61406
DeclContext. Instead, just keep the list of currently-active
declarations and only build the OverloadedFunctionDecl when we
absolutely need it.
This is a half-step toward eliminating the need to explicitly build
OverloadedFunctionDecls that store sets of overloaded
functions. This was suggested by Argiris a while back, and it's a good
thing for several reasons: first, it eliminates the messy logic that
currently tries to keep the OverloadedFunctionDecl in sync with the
declarations that are being added. Second, it will (eventually)
eliminate the need to allocate memory for overload sets, which could
help performance. Finally, it helps set us up for when name lookup can
return multiple (possibly ambiguous) results, as can happen with
lookup of class members in C++.
Next steps: make the IdentifierResolver store overloads as separate
entries in its list rather than replacing them with an
OverloadedFunctionDecl now, then see how far we can go toward
eliminating OverloadedFunctionDecl entirely.
llvm-svn: 61357