Specifically, objc-arc-expand will make sure that the
objc_retainAutoreleasedReturnValue, objc_autoreleaseReturnValue, and ret
will all have %call as an argument.
llvm-svn: 178382
We can check if the receiver is nil in the node that corresponds to the StmtPoint of the message send.
At that point, the receiver is guaranteed to be live. We will find at least one unreclaimed node due to
my previous commit (look for StmtPoint instead of PostStmt) and the fact that the nil receiver nodes are tagged.
+ a couple of extra tests.
llvm-svn: 178381
trackNullOrUndefValue tries to find the first node that matches the statement it is tracking.
Since we collect PostStmt nodes (in node reclamation), none of those might be on the
current path, so relax the search to look for any StmtPoint.
llvm-svn: 178380
std::lower_bound is the canonical "binary search" in the STL
(std::binary_search generally is not what you want). The name actually
makes a lot of sense (and also has a beautiful symmetry with the
std::upper_bound algorithm). The name is nonetheless non-obvious.
Also, remove mention of "radix search". It's not even clear how that
would work in the context of a sorted vector. AFAIK "radix search" only
makes sense when you have a trie-like data structure.
llvm-svn: 178376
When using modules we should not ignore overridden methods from
categories that are hidden because the module is not visible.
This will give more consistent results (when imports change) and it's more
correct since the methods are indeed overridden even if they are not "visible"
for lookup purposes.
rdar://13350796
llvm-svn: 178374
clang.arc.used is an interesting call for ARC since ObjCARCContract
needs to run to remove said intrinsic to avoid a linker error (since the
call does not exist).
llvm-svn: 178369
Like nearbyint, rint can be implemented on PPC using the frin instruction. The
complication comes from the fact that rint needs to set the FE_INEXACT flag
when the result does not equal the input value (and frin does not do that). As
a result, we use a custom inserter which, after the rounding, compares the
rounded value with the original, and if they differ, explicitly sets the XX bit
in the FPSCR register (which corresponds to FE_INEXACT).
Once LLVM has better modeling of the floating-point environment we should be
able to (often) eliminate this extra complexity.
llvm-svn: 178362
* Store the .block_descriptor (instead of self) in the alloca so we
can guarantee that all captured variables are available at -O0.
* Add the missing OpDeref for the alloca.
rdar://problem/12767564
llvm-svn: 178361
A9 uses itinerary classes, Swift uses RW lists. This tripped some
verification when we're expanding variants. I had to refine the
verification a bit.
llvm-svn: 178357
These instructions are available on the P5x (and later) and on the A2. They
implement the standard floating-point rounding operations (floor, trunc, etc.).
One caveat: frin (round to nearest) does not implement "ties to even", and so
is only enabled in fast-math mode.
llvm-svn: 178337
This reverts commit 617330909f0c26a3f2ab8601a029b9bdca48aa61.
It broke the bots:
/home/clangbuild2/clang-ppc64-2/llvm.src/unittests/ADT/SmallVectorTest.cpp:150: PushPopTest
/home/clangbuild2/clang-ppc64-2/llvm.src/unittests/ADT/SmallVectorTest.cpp:118: Failure
Value of: v[i].getValue()
Actual: 0
Expected: value
Which is: 2
llvm-svn: 178334