Summary:
The Itanium ABI approach of using offset-to-top isn't possible with the
MS ABI, it doesn't have that kind of information lying around.
Instead, we do the following:
- Call the virtual deleting destructor with the "don't delete the object
flag" set. The virtual deleting destructor will return a pointer to
'this' adjusted to the most derived class.
- Call the global delete using the adjusted 'this' pointer.
Reviewers: rnk
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D5996
llvm-svn: 220993
This eliminates some i8* GEPs and makes the IR that clang emits a bit
more canonical. More work is needed for vftables, but that isn't a clear
win so I plan to send it for review.
llvm-svn: 220398
This commit changes the way we blacklist functions in ASan, TSan,
MSan and UBSan. We used to treat function as "blacklisted"
and turned off instrumentation in it in two cases:
1) Function is explicitly blacklisted by its mangled name.
This part is not changed.
2) Function is located in llvm::Module, whose identifier is
contained in the list of blacklisted sources. This is completely
wrong, as llvm::Module may not correspond to the actual source
file function is defined in. Also, function can be defined in
a header, in which case user had to blacklist the .cpp file
this header was #include'd into, not the header itself.
Such functions could cause other problems - for instance, if the
header was included in multiple source files, compiled
separately and linked into a single executable, we could end up
with both instrumented and non-instrumented version of the same
function participating in the same link.
After this change we will make blacklisting decision based on
the SourceLocation of a function definition. If a function is
not explicitly defined in the source file, (for example, the
function is compiler-generated and responsible for
initialization/destruction of a global variable), then it will
be blacklisted if the corresponding global variable is defined
in blacklisted source file, and will be instrumented otherwise.
After this commit, the active users of blacklist files may have
to revisit them. This is a backwards-incompatible change, but
I don't think it's possible or makes sense to support the
old incorrect behavior.
I plan to make similar change for blacklisting GlobalVariables
(which is ASan-specific).
llvm-svn: 219997
Summary:
This add support for the C++11 feature, thread_local global variables.
The ABI Clang implements is an improvement of the MSVC ABI. Sadly,
further improvements could be made but not without sacrificing ABI
compatibility.
The feature is implemented as follows:
- All thread_local initialization routines are pointed to from the
.CRT$XDU section.
- All non-weak thread_local variables have their initialization routines
call from a single function instead of getting their own .CRT$XDU
section entry. This is done to open up optimization opportunities to
the compiler.
- All weak thread_local variables have their own .CRT$XDU section entry.
This entry is in a COMDAT with the global variable it is initializing;
this ensures that we will initialize the global exactly once.
- Destructors are registered in the initialization function using
__tlregdtor.
Differential Revision: http://reviews.llvm.org/D5597
llvm-svn: 219074
CodeGen would try to come up with an LLVM IR type for a pointer to
member type on the way to forming an LLVM IR type for a pointer to
pointer to member type.
However, if the pointer to member representation has not been locked in yet,
we would not be able to come up with a pointer to member IR type.
In these cases, make the pointer to member type an incomplete type.
This will make the pointer to pointer to member type a pointer to an
incomplete type. If the class eventually obtains an inheritance model,
we will make the pointer to member type represent the actual inheritance
model.
Differential Revision: http://reviews.llvm.org/D5373
llvm-svn: 218084
Deleted virtual functions get _purecall inserted into the vftable.
Earlier CTPs would simply stick nullptr in there.
N.B. MSVC can't handle deleted virtual functions which require return
adjusting thunks, they give an error that a deleted function couldn't be
called inside of a compiler generated function. We get this correct by
making the thunk have a __purecall entry as well.
llvm-svn: 217654
We assumed that the incoming this argument would be the last argument.
However, this is not true under the MS ABI.
This fixes PR20897.
llvm-svn: 217642
There were code paths that are duplicated for constructors and destructors just
because we have both CXXCtorType and CXXDtorsTypes.
This patch introduces an unified enum and reduces code deplication a bit.
llvm-svn: 217383
This avoids encoding information about the function prototype into the
thunk at the cost of some function prototype bitcast gymnastics.
Fixes PR20653.
llvm-svn: 216782
into EmitCXXMemberOrOperatorCall methods. In the end we want
to make declaration visible in EmitCallArgs() method, that
would allow us to alter CodeGen depending on function/parameter
attributes.
No functionality change.
llvm-svn: 216404
MSVC doesn't decide what the inheritance model for a returned member
pointer *until* a call expression returns it.
This fixes PR20017.
llvm-svn: 215164
This moves some memptr specific code into the generic thunk emission
codepath.
Fixes PR20053.
Reviewers: majnemer
Differential Revision: http://reviews.llvm.org/D4613
llvm-svn: 214004
While -fno-rtti-data would correctly avoid referencing the RTTI complete
object locator in the VFTable itself, it would emit them anyway.
llvm-svn: 213841
This makes us emit dllexported in-class initialized static data members (which
are treated as definitions in MSVC), even when they're not referenced.
It also makes their special linkage reflected in the GVA linkage instead of
getting massaged in CodeGen.
Differential Revision: http://reviews.llvm.org/D4563
llvm-svn: 213304
Previously, we would have a private backing variable and an internal
alias pointing at it.
However, -fdata-sections only fires if a global variable has non-private
linkage. This means that an unreferenced vftable wouldn't get
discarded, bloating the object file.
Instead, stick the backing variable in a comdat even if the alias has
internal linkage. This will allow the linker to drop the vftable if it
is unused.
llvm-svn: 212901
The MS ABI RTTI emission code would choose names for IR types like
%"MSRTTITypeDescriptor\02". This name is undesirable because it
requires escaping; the underlying reason for this is that the name is
unprintable. Fix this by naming it %rtti.TypeDescriptor2.
While here, stop trying to do lookups in the LLVM Module's type table.
Instead, store the IR types in MicrosoftCXXABI. Lookups by name aren't
particularly fast.
llvm-svn: 212439
Let's not expose ABI specific minutia inside of CodeGenModule and Type.
Instead, let's abstract it through CXXABI.
This gets rid of:
CodeGenModule::getCompleteObjectLocator,
CodeGenModule::EmitFundamentalTypeDescriptor{s,},
CodeGenModule::getMSTypeDescriptor,
CodeGenModule::getMSCompleteObjectLocator,
CGCXXABI::shouldRTTIBeUnique,
CGCXXABI::classifyRTTIUniqueness.
CGRTTI was *almost* entirely centered around providing Itanium-style
RTTI information. Instead of providing interfaces that only it
consumes, move it to the ItaniumCXXABI implementation file. This allows
it to have access to Itanium-specific implementation details without
providing useless expansion points for the Microsoft ABI side.
Differential Revision: http://reviews.llvm.org/D4261
llvm-svn: 212435
There are slight differences between /GR- and -fno-rtti which made
mapping one to the other inappropriate.
-fno-rtti disables dynamic_cast, typeid, and does not emit RTTI related
information for the v-table.
/GR- does not generate complete object locators and thus will not
reference them in vftables. However, constructs like dynamic_cast and
typeid are permitted.
This should bring our implementation of RTTI up to semantic parity with
MSVC modulo bugs.
llvm-svn: 212138
The pointer for a class's RTTI data comes right before the VFTable but
has no name. To be properly compatible with this, we do the following:
* Create a single GlobalVariable which holds the contents of the VFTable
_and_ the pointer to the RTTI data.
* Create a GlobalAlias, with appropriate linkage/visibility, that points
just after the RTTI data pointer. This ensures that the VFTable
symbol will always refer to VFTable data.
* Create a Comdat with a "Largest" SelectionKind and stick the private
GlobalVariable in it. By transitivity, the GlobalAlias will be a
member of the Comdat group. Using "Largest" ensures that foreign
definitions without an RTTI data pointer will _not_ be chosen in the
final linked image.
Whether or not we emit RTTI data depends on several things:
* The -fno-rtti flag implies that we should never not emit a pointer to
RTTI data before the VFTable.
* __declspec(dllimport) brings in the VFTable from a remote DLL. Use an
available_externally GlobalVariable to provide a local definition of
the VFTable. This means that we won't have any available_externally
definitions of things like complete object locators. This is
acceptable because they are never directly referenced.
To my knowledge, this completes the implementation of MSVC RTTI code
generation.
Further semantic work should be done to properly support /GR-.
llvm-svn: 212125
This reverts commit r211467 which reverted r211408,r211410, it caused
crashes in test/SemaCXX/undefined-internal.cpp for i686-win32 targets.
llvm-svn: 211473
This refactors the emission of dynamic_cast and typeid expressions so
that ABI specific knowledge lives in appropriate places. There are
quite a few benefits for having the two implementations share a common
core like sharing logic for optimization opportunities.
While we are at it, clean up the tests.
llvm-svn: 211402
As suggested by Reid:
- class has GVA_Internal linkage -> internal
- thunk has return adjustment -> weak_odr, to handle evil corner case [1]
- all other normal methods -> linkonce_odr
1. Evil corner case:
struct Incomplete;
struct A { int a; virtual A *bar(); };
struct B { int b; virtual B *foo(Incomplete); };
struct C : A, B { int c; virtual C *foo(Incomplete); };
C c;
Here, the thunk for C::foo() will be emitted when C::foo() is defined, which
might be in a different translation unit, so it needs to be weak_odr.
Differential Revision: http://reviews.llvm.org/D3992
llvm-svn: 210368
This implements the central part of support for dllimport/dllexport on
classes: allowing the attribute on class declarations, inheriting it
to class members, and forcing emission of exported members. It's based
on Nico Rieck's patch from http://reviews.llvm.org/D1099.
This patch doesn't propagate dllexport to bases that are template
specializations, which is an interesting problem. It also doesn't
look at the rules when redeclaring classes with different attributes,
I'd like to do that separately.
Differential Revision: http://reviews.llvm.org/D3877
llvm-svn: 209908
Initializers of global data that can appear multiple TUs (static data
members of class templates or __declspec(selectany) data) are now in a
comdat group keyed on the global variable being initialized. On
non-Windows platforms, this is a code size and startup time
optimization. On Windows, this is necessary for ABI compatibility with
MSVC.
Fixes PR16959.
Reviewers: rsmith
Differential Revision: http://reviews.llvm.org/D3811
llvm-svn: 209555
Enables the emission of MS-compatible RTTI data structures for use with
typeid, dynamic_cast and exceptions. Does not implement dynamic_cast
or exceptions. As an artiface, typeid works in some cases but proper
support an testing will coming in a subsequent patch.
majnemer has fuzzed the results. Test cases included.
Differential Revision: http://reviews.llvm.org/D3833
llvm-svn: 209523
This allows us to perfectly forward non-trivial arguments that use
inalloca.
We still can't forward non-trivial arguments through thunks when we have
a covariant return type with a non-trivial adjustment. This would
require emitting an extra copy, which is non-conforming anyway.
llvm-svn: 208927
This affects both the Itanium and Microsoft C++ ABIs.
This is in anticipation of a change to the Itanium C++ ABI, and should
match GCC's current behavior. The new text will likely be:
"""
Pass an object of class type by value if every copy constructor and
move constructor is deleted or trivial and at least one of them is not
deleted, and the destructor is trivial.
"""
http://sourcerytools.com/pipermail/cxx-abi-dev/2014-May/002728.html
On x86 Windows, we can mostly use the same logic, where we use inalloca
instead of passing by address. However, on Win64, there are register
parameters, and we have to do what MSVC does. MSVC ignores the presence
of non-trivial move constructors and only considers the presence of
non-trivial or deleted copy constructors. If a non-trivial or deleted
copy ctor is present, it passes the argument indirectly.
This change fixes bugs and makes us more ABI compatible with both GCC
and MSVC.
Fixes PR19668.
Reviewers: rsmith
Differential Revision: http://reviews.llvm.org/D3660
llvm-svn: 208786
In the Microsoft C++ ABI, instance methods always return records
indirectly via the second hidden parameter. This was implemented in
X86_32ABIInfo, but not WinX86_64ABIInfo.
Rather than exposing a handful of boolean methods in the CGCXXABI
interface, we can expose a single method that applies C++ ABI return
value classification rules.
llvm-svn: 208733
Summary:
MSVC always passes 'sret' after 'this', unlike GCC. This required
changing a number of places in Clang that assumed the sret parameter was
always first in LLVM IR.
This fixes win64 MSVC ABI compatibility for methods returning structs.
Reviewers: rsmith, majnemer
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D3618
llvm-svn: 208458
Passing objects directly (in registers or memory) creates a second copy
of the object in the callee. The callee always destroys its copy, but
we also have to destroy any temporary created in the caller. In other
words, copy elision of these kinds of objects is impossible.
Objects larger than 8 bytes with non-trivial dtors and trivial copy
ctors are still passed indirectly, and we can still elide copies of
them.
Fixes PR19640.
llvm-svn: 207889
This code is trying to test if the pointer is *not* null. Therefore we
should use 'or' instead of 'and' to combine the results of 'icmp ne'.
This logic is consistent with the general member pointer comparison code
in EmitMemberPointerComparison.
llvm-svn: 207815
We were using the same guard variable and failing to initialize the
second global.
Clang is still not MS ABI compatible in this area. Fixing that is
PR16959, which will require LLVM changes to @llvm.global_ctors.
llvm-svn: 207008
Summary:
The MSVC ABI appears to mangle the lexical scope into the names of
statics. Specifically, a counter is incremented whenever a scope is
entered where things can be declared in such a way that an ambiguity can
arise. For example, a class scope inside of a class scope doesn't do
anything interesting because the nested class cannot collide with
another nested class.
There are problems with this scheme:
- It is unreliable. The counter is only incremented when a previously
never encountered scope is entered. There are cases where this will
cause ambiguity amongst declarations that have the same name where one
was introduced in a deep scope while the other was introduced right
after in the previous lexical scope.
- It is wasteful. Statements like: {{{{{{{ static int foo = a; }}}}}}}
will make the mangling of "foo" larger than it need be because the
scope counter has been incremented many times.
Because of these problems, and practical implementation concerns. We
choose not to implement this scheme if the local static or local type
isn't visible. The mangling of these declarations will look very
similar but the numbering will make far more sense, this scheme is
lifted from the Itanium ABI implementation.
Reviewers: rsmith, doug.gregor, rnk, eli.friedman, cdavis5x
Reviewed By: rnk
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2953
llvm-svn: 202951
Summary:
This merges VFPtrInfo and VBTableInfo into VPtrInfo, since they hold
almost the same information. With that change, the vbtable mangling
code can easily be applied to vftable data and we magically get the
correct, unambiguous vftable names.
Fixes PR17748.
Reviewers: timurrrr, majnemer
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2893
llvm-svn: 202425
Virtual methods expect 'this' to point to the vfptr containing the
virtual method, and this extends to virtual member pointer thunks. The
relevant vfptr is always at offset zero on entry to the thunk, and no
this adjustment is needed.
Previously we would not include the vfptr adjustment in the member
pointer, and we'd look at the vfptr offset when loading from the vftable
in the thunk.
Fixes PR18917.
llvm-svn: 201835
The MS ABI requires that we determine the vbptr offset if have a
virtual inheritance model. Instead, raise an error pointing to the
diagnostic when this happens.
This fixes PR18583.
Differential Revision: http://llvm-reviews.chandlerc.com/D2842
llvm-svn: 201824
Summary:
Generally the vector deleting dtor, which we model as a vtable thunk,
takes care of non-virtual adjustment and delegates to the other
destructor variants. The other non-complete destructor variants assume
that 'this' on entry points to the virtual base subobject that first
declared the virtual destructor.
We need to change the adjustment in both the prologue and the vdtor call
setup.
Reviewers: timurrrr
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2821
llvm-svn: 201612
Member pointers are mangled as they would be represented at runtime.
They can be a single integer literal, single decl, or a tuple with some
more numbers tossed in. With Clang today, most of those numbers will be
zero because we reject pointers to members of virtual bases.
This change required moving VTableContextBase ownership from
CodeGenVTables to ASTContext, because mangling now depends on vtable
layout.
I also hoisted the inheritance model helpers up to be inline static
methods of MSInheritanceAttr. This makes the AST code that deals with
member pointers much more readable.
MSVC doesn't appear to have stable manglings of null member pointers:
- Null data memptrs in function templates have a mangling collision with
the first field of a non-polymorphic single inheritance class.
- The mangling of null data memptrs changes if you add casts.
- Large null function memptrs in class templates crash MSVC.
Clang uses the class template mangling for null data memptrs and the
function template mangling for null function memptrs to deal with this.
Reviewers: majnemer
Differential Revision: http://llvm-reviews.chandlerc.com/D2695
llvm-svn: 200857
When a non-trivial parameter is present, clang now gathers up all the
parameters that lack inreg and puts them into a packed struct. MSVC
always aligns each parameter to 4 bytes and no more, so this is a pretty
simple struct to lay out.
On win64, non-trivial records are passed indirectly. Prior to this
change, clang was incorrectly using byval on win64.
I'm able to self-host a working clang with this change and additional
LLVM patches.
Reviewers: rsmith
Differential Revision: http://llvm-reviews.chandlerc.com/D2636
llvm-svn: 200597
This reverts commit r199475 (which reverted r199416) with fixes for the
breakages.
We wouldn't lock an inheritance model if we saw a pointer-to-member
formed as a result of the address-of operator.
llvm-svn: 199482
The MSVC ABI is rather finicky about the exact representation of it's
pointer-to-member representation. The exact position of when and where
it will go with one representation versus another appears to be when it
desires the pointer-to-member to be complete.
To properly implement this in clang, do several things:
- Give up on tracking the polymorphic nature of the class. It isn't
useful to Sema and is only pertinent when choosing CodeGen-time
details like whether the field-offset can be 0 instead of -1.
- Insist on locking-in the inheritance model when we ask our
pointer-to-member type to be complete. From there, grab the
underlying CXXRecordDecl and try to make *that* complete. Once we've
done this, we can calculate it's inheritance model and apply it using
an attribute.
N.B. My first bullet point is a lie. We will eventually care about the
specifics of whether or not a CXXRecordDecl is or is not polymorphic
because MSVC compatible mangling of such things depends on it. However,
I believe we will handle this in a rather different way.
llvm-svn: 199416
encodes the canonical rules for LLVM's style. I noticed this had drifted
quite a bit when cleaning up LLVM, so wanted to clean up Clang as well.
llvm-svn: 198686
Summary:
This makes us more compatible with MSVC 2012+ and fixes PR17748 where we
would give two tables the same name.
Rather than doing a fresh depth-first traversal of the inheritance graph
for every record's vbtables, now we memoize vbtable paths for each
record. By doing memoization, we end up considering virtual bases of
subobjects that come later in the depth-first traversal. Where
previously we would have ignored a virtual base that we'd already seen,
we now consider it for name mangling purposes without emitting a
duplicate vbtable for it.
Reviewers: majnemer
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2509
llvm-svn: 198462
Summary:
No functionality change.
This code should live here long-term because we should be able to use it
to compute correct vftable names.
It turns out that the most natural way to implement the naming algorithm
is to use a caching layer similar to what we already have for virtual
table info in VTableContext. Subsequent changes will take advantage of
this to fix PR17748, where we have a vbtable name collision.
Reviewers: majnemer
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2499
llvm-svn: 198380
Unlike Itanium's VTTs, the 'most derived' boolean or bitfield is the
last parameter for non-variadic constructors, rather than the second.
For variadic constructors, the 'most derived' parameter comes after the
'this' parameter. This affects constructor calls and constructor decls
in a variety of places.
Reviewers: timurrrr
Differential Revision: http://llvm-reviews.chandlerc.com/D2405
llvm-svn: 197518
Testing has revealed that large integral constants (i.e. > INT64_MAX)
are always mangled as-if they are negative, even in places where it
would not make sense for them to be negative (like non-type template
parameters of type unsigned long long).
To address this, we change the way we model number mangling: always
mangle as-if our number is an int64_t. This should result in correct
results when we have large unsigned numbers.
N.B. Bizarrely, things that are 32-bit displacements like vbptr offsets
are mangled as-if they are unsigned 32-bit numbers. This is a pretty
egregious waste of space, it would be a 4x savings if we could mangle it
like a signed 32-bit number. Instead, we explicitly cast these
displacements to uint32_t and let the mangler proceed.
llvm-svn: 196771
This makes Clang emit a linkonce_odr definition for 'val' in the code below,
to be compatible with MSVC-compiled code:
struct Foo {
static const int val = 1;
};
Differential Revision: http://llvm-reviews.chandlerc.com/D2233
llvm-svn: 195283
Instead of storing the vtable offset directly in the function pointer and
doing a branch to check for virtualness at each call site, the MS ABI
generates a thunk for calling the function at a specific vtable offset,
and puts that in the function pointer.
This patch adds support for emitting such thunks. However, it doesn't support
pointers to virtual member functions that are variadic, have an incomplete
aggregate return type or parameter, or are overriding a function in a virtual
base class.
Differential Revision: http://llvm-reviews.chandlerc.com/D2104
llvm-svn: 194827
If a class is using the unspecified inheritance model for member
pointers and later we find the class is defined to use single
inheritance, zero out the vbptr offset field of the member pointer when
it is formed.
llvm-svn: 192664
Static locals requiring initialization are not thread safe on Windows.
Unfortunately, it's possible to create static locals that are actually
externally visible with inline functions and templates. As a result, we
have to implement an initialization guard scheme that is compatible with
TUs built by MSVC, which makes thread safety prohibitively difficult.
MSVC's scheme is that every function that requires a guard gets an i32
bitfield. Each static local is assigned a bit that indicates if it has
been initialized, up to 32 bits, at which point a new bitfield is
created. MSVC rejects inline functions with more than 32 static locals,
and the externally visible mangling (?_B) only allows for one guard
variable per function.
On Eli's recommendation, I used MangleNumberingContext to track which
bit each static corresponds to.
Implements PR16888.
Reviewers: rjmccall, eli.friedman
Differential Revision: http://llvm-reviews.chandlerc.com/D1416
llvm-svn: 190427
Based on Peter Collingbourne's destructor patches.
Prior to this change, clang was considering ?1 to be the complete
destructor and the base destructor, which was wrong. This lead to
crashes when clang tried to emit two LLVM functions with the same name.
In this ABI, TUs with non-inline dtors might not emit a complete
destructor. They are emitted as inline thunks in TUs that need them,
and they always delegate to the base dtors of the complete class and its
virtual bases. This change uses the DeferredDecls machinery to emit
complete dtors as needed.
Currently in clang try body destructors can catch exceptions thrown by
virtual base destructors. In the Microsoft C++ ABI, clang may not have
the destructor definition, in which case clang won't wrap the virtual
virtual base destructor calls in a try-catch. Diagnosing this in user
code is TODO.
Finally, for classes that don't use virtual inheritance, MSVC always
calls the base destructor (?1) directly. This is a useful code size
optimization that avoids emitting lots of extra thunks or aliases.
Implementing it also means our existing tests continue to pass, and is
consistent with MSVC's output.
We can do the same for Itanium by tweaking GetAddrOfCXXDestructor, but
it will require further testing.
Reviewers: rjmccall
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D1066
llvm-svn: 186828
This allows clang to use the backend parameter attribute 'returned' when generating 'this'-returning constructors and destructors in ARM and MSVC C++ ABIs.
llvm-svn: 185291
Itanium destroys them in the caller at the end of the full expression,
but MSVC destroys them in the callee. This is further complicated by
the need to emit EH-only destructor cleanups in the caller.
This should help clang compile MSVC's debug iterators more correctly.
There is still an outstanding issue in PR5064 of a memcpy emitted by the
LLVM backend, which is not correct for C++ records.
Fixes PR16226.
Reviewers: rjmccall
Differential Revision: http://llvm-reviews.chandlerc.com/D929
llvm-svn: 184543
1) Removed useless return value of CGCXXABI::EmitConstructorCall and CGCXXABI::EmitVirtualDestructorCall and implementations
2) Corrected last portion of CodeGenCXX/constructor-destructor-return-this to correctly test for non-'this'-return of virtual destructor calls
llvm-svn: 184330
In Itanium, dynamic classes have one vtable with several different
address points for dynamic base classes that can't share vtables.
In the MS C++ ABI, each vbtable that can't be shared gets its own
symbol, similar to how ctor vtables work in Itanium. However, instead
of mangling the subobject offset into the symbol, the unique portions of
the inheritance path are mangled into the symbol to make it unique.
This patch implements the MSVC 2012 scheme for forming unique vbtable
symbol names. MSVC 2010 use the same mangling with a different subset
of the path. Implementing that mangling and possibly others is TODO.
Each vbtable is an array of i32 offsets from the vbptr that points to it
to another virtual base subobject. The first entry of a vbtable always
points to the base of the current subobject, implying that it is the
same no matter which parent class contains it.
Reviewers: rjmccall
Differential Revision: http://llvm-reviews.chandlerc.com/D636
llvm-svn: 184309
The backend will now use the generic 'returned' attribute to form tail calls where possible, as well as avoid save-restores of 'this' in some cases (specifically the cases that matter for the ARM C++ ABI).
This patch also reverts a prior front-end only partial implementation of these optimizations, since it's no longer required.
llvm-svn: 184205
Also addresses a review comment from John from on r180985 by removing
the "== -1" check, since it's now reusing the correct code which has the
comment.
llvm-svn: 183318
While we can't yet emit vbtables, this allows us to find virtual bases
of objects constructed in other TUs.
This make iostream hello world work, since basic_ostream virtually
inherits from basic_ios.
Differential Revision: http://llvm-reviews.chandlerc.com/D795
llvm-svn: 182870
Summary:
This only supports converting along non-virtual inheritance paths by
changing the field offset or the non-virtual base adjustment.
This implements three kinds of conversions:
- codegen for Value conversions
- Constant emission for APValue
- Constant folding for CastExprs
In almost all constant initialization settings
EmitMemberPointer(APValue) is called, except when the expression
contains a reinterpret cast.
reinterpret casts end up being a big corner case because the null value
changes between different kinds of member pointers.
Reviewers: rsmith
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D741
llvm-svn: 181543
Without any conversion, this is pretty straightforward. Most of the
fields can be zeros. The order is:
- field offset or pointer
- nonvirtual adjustment (for MI functions)
- vbptr offset (for unspecified)
- virtual adjustment offset (for virtual inheritance)
Differential Revision: http://llvm-reviews.chandlerc.com/D699
llvm-svn: 180985
Summary:
Like Itanium, comparisons are basically bitwise comparisons of the two
values, with an exception for null member function pointers. If two
function pointers are null, only the function pointer field matters for
comparison purposes. The rest of the bits can be arbitrary. We take
advantage of this in isZeroInitializable(), and it may matter once we
start emitting conversions.
Reviewers: rjmccall
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D695
llvm-svn: 180800
Also,
- abstract out the indirect/in memory/in registers decisions into the CGCXXABI
- fix handling of empty struct arguments for '-cxx-abi microsoft'
- add/fix tests
llvm-svn: 179681
non-constant constructors or non-trivial destructors. Plus bugfixes for
thread_local references bound to temporaries (the temporaries themselves are
lifetime-extended to become thread_local), and the corresponding case for
std::initializer_list.
llvm-svn: 179496
Summary:
Handles all inheritance models for both data and function member
pointers.
Also implements isZeroInitializable() and refactors some of the null
member pointer code.
MSVC supports converting member pointers through virtual bases, which
clang does not (yet?) support. Implementing that extension is covered
by http://llvm.org/15713
Reviewers: rjmccall
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D613
llvm-svn: 179305
Summary:
For non-dynamic classes (no virtual bases), member data pointers are
simple offsets from the base of the record. Dynamic classes use an
aggregate for member data pointers and are therefore currently
unsupported.
Unlike Itanium, the ms ABI uses 0 to represent null for polymorphic
classes. Non-polymorphic classes use -1 like Itanium, since 0 is a
valid field offset.
Reviewers: rjmccall
CC: timurrrr, cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D558
llvm-svn: 177753
For constructors/desctructors that return 'this', if there exists a callsite
that returns 'this' and is immediately before the return instruction, make
sure we are using the return value from the callsite.
We don't need to keep 'this' alive through the callsite. It also enables
optimizations in the backend, such as tail call optimization.
Updated from r177211.
rdar://12818789
llvm-svn: 177541
For constructors/desctructors that return 'this', if there exists a callsite
that returns 'this' and is immediately before the return instruction, make
sure we are using the return value from the callsite.
We don't need to keep 'this' alive through the callsite. It also enables
optimizations in the backend, such as tail call optimization.
rdar://12818789
llvm-svn: 177211
never key functions. We did not implement that rule for the
iOS ABI, which was driven by what was implemented in gcc-4.2.
However, implement it now for other ARM-based platforms.
llvm-svn: 173515
This is consistent/interoperable with GCC 4.7 (& __cxa_deleted_function isn't
present in 4.4 - not sure when it got added, but you'll need something with
that function available for this to work).
llvm-svn: 166069
be sure to delete the complete object pointer, not the original
pointer. This is necessary if the base being deleted is at a
non-zero offset in the complete object. This is only required
for objects with virtual destructors because deleting an object
via a base-class subobject when the base does not have a virtual
destructor is undefined behavior.
Noticed while reviewing the last four years of cxx-abi-dev
activity.
llvm-svn: 164597
and only consider using __cxa_atexit in the Itanium logic. The
default logic is to use atexit().
Emit "guarded" initializers in Microsoft mode unconditionally.
This is definitely not correct, but it's closer to correct than
just not emitting the initializer.
Based on a patch by Timur Iskhodzhanov!
llvm-svn: 155894
what I'm going to treat as basically universal properties of
array-cookie code. Implement MS array cookies on top of that.
Based on a patch by Timur Iskhodzhanov!
llvm-svn: 155886
process, perform a number of refactorings:
- Move MiscNameMangler member functions to MangleContext
- Remove GlobalDecl dependency from MangleContext
- Make MangleContext abstract and move Itanium/Microsoft functionality
to their own classes/files
- Implement ASTContext::createMangleContext and have CodeGen use it
No (intended) functionality change.
llvm-svn: 123386
16-bits in size. Implement this by splitting WChar into two enums, like we have
for char. This fixes a miscompmilation of XULRunner, PR8856.
llvm-svn: 122558
pack expansions, e.g. given
template<typename... Types> struct tuple;
template<typename... Types>
struct tuple_of_refs {
typedef tuple<Types&...> types;
};
the type of the "types" typedef is a PackExpansionType whose pattern
is Types&.
This commit introduces support for creating pack expansions for
template type arguments, as above, but not for any other kind of pack
expansion, nor for any form of instantiation.
llvm-svn: 122223
mangler. Now member functions and pointers thereof have their calling
convention mangled as __thiscall if they have the default CC (even though,
they technically still have the __cdecl CC).
llvm-svn: 118598
pointers. I find the resulting code to be substantially cleaner, and it
makes it very easy to use the same APIs for data member pointers (which I have
conscientiously avoided here), and it avoids a plethora of potential
inefficiencies due to excessive memory copying, but we'll have to see if it
actually works.
llvm-svn: 111776
ObjC pointers were easy enough (as far as the ABI is concerned, they're
just pointers to structs), but I had to invent a new mangling for block
pointers. This is particularly worrying with the Microsoft ABI, because
it is a vendor-specific ABI; extending it could come back to bite us
later when MS extends it on their own (and you know they will).
llvm-svn: 107572