Apple's CPUs are called A7-A13 in official communication, occasionally with
weird suffixes which we probably don't need to care about. This adds each one
and describes its features. It also switches the default CPU to the canonical
name for Cyclone, but leaves legacy support in so that existing bitcode still
compiles.
As the extern_weak target might be missing, resolving to the absolute
address zero, we can't use the normal direct PC-relative branch
instructions (as that would result in relocations out of range).
Improve the classifyGlobalFunctionReference method to set
MO_DLLIMPORT/MO_COFFSTUB, and simplify the existing code in
AArch64TargetLowering::LowerCall to use the return value from
classifyGlobalFunctionReference for these cases.
Add code in both AArch64FastISel and GlobalISel/IRTranslator to
bail out for function calls to extern weak functions on windows,
to let SelectionDAG handle them.
This matches what was done for X86 in 6bf108d77a.
Differential Revision: https://reviews.llvm.org/D71721
This caused severe compile-time regressions, see PR43455.
> Modern processors predict the targets of an indirect branch regardless of
> the size of any jump table used to glean its target address. Moreover,
> branch predictors typically use resources limited by the number of actual
> targets that occur at run time.
>
> This patch changes the semantics of the option `-max-jump-table-size` to limit
> the number of different targets instead of the number of entries in a jump
> table. Thus, it is now renamed to `-max-jump-table-targets`.
>
> Before, when `-max-jump-table-size` was specified, it could happen that
> cluster jump tables could have targets used repeatedly, but each one was
> counted and typically resulted in tables with the same number of entries.
> With this patch, when specifying `-max-jump-table-targets`, tables may have
> different lengths, since the number of unique targets is counted towards the
> limit, but the number of unique targets in tables is the same, but for the
> last one containing the balance of targets.
>
> Differential revision: https://reviews.llvm.org/D60295
llvm-svn: 373060
Modern processors predict the targets of an indirect branch regardless of
the size of any jump table used to glean its target address. Moreover,
branch predictors typically use resources limited by the number of actual
targets that occur at run time.
This patch changes the semantics of the option `-max-jump-table-size` to limit
the number of different targets instead of the number of entries in a jump
table. Thus, it is now renamed to `-max-jump-table-targets`.
Before, when `-max-jump-table-size` was specified, it could happen that
cluster jump tables could have targets used repeatedly, but each one was
counted and typically resulted in tables with the same number of entries.
With this patch, when specifying `-max-jump-table-targets`, tables may have
different lengths, since the number of unique targets is counted towards the
limit, but the number of unique targets in tables is the same, but for the
last one containing the balance of targets.
Differential revision: https://reviews.llvm.org/D60295
llvm-svn: 372893
Summary:
This patch renames functions that takes or returns alignment as log2, this patch will help with the transition to llvm::Align.
The renaming makes it explicit that we deal with log(alignment) instead of a power of two alignment.
A few renames uncovered dubious assignments:
- `MirParser`/`MirPrinter` was expecting powers of two but `MachineFunction` and `MachineBasicBlock` were using deal with log2(align). This patch fixes it and updates the documentation.
- `MachineBlockPlacement` exposes two flags (`align-all-blocks` and `align-all-nofallthru-blocks`) supposedly interpreted as power of two alignments, internally these values are interpreted as log2(align). This patch updates the documentation,
- `MachineFunctionexposes` exposes `align-all-functions` also interpreted as power of two alignment, internally this value is interpreted as log2(align). This patch updates the documentation,
Reviewers: lattner, thegameg, courbet
Subscribers: dschuff, arsenm, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, Jim, s.egerton, llvm-commits, courbet
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65945
llvm-svn: 371045
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
Currently we can't keep any state in the selector object that we get from
subtarget. As a result we have to plumb through all our variables through
multiple functions. This change makes it non-const and adds a virtual init()
method to allow further state to be captured for each target.
AArch64 makes use of this in this patch to cache a call to hasFnAttribute()
which is expensive to call, and is used on each selection of G_BRCOND.
Differential Revision: https://reviews.llvm.org/D65984
llvm-svn: 368652
Summary:
The Arm Neoverse N1 Software Optimization Guide [1], Section "4.8 Branch
instruction alignment" states:
"Consider aligning subroutine entry points and branch targets to 32B
boundaries, within the bounds of the code-density requirements of the
program."
This patch sets the preferred function alignment on Neoverse N1 to 2^4=16B.
This was already the case in some of the latest Cortex-A CPUs. Benchmarking
in previous Cortex-A CPUs suggested that 16B alignment is already better
than the default. See commit d04ee305.
The reason we don't set it to 32B right now (as the optimisation guide
suggests) is that this will impact code size and perhaps the instruction
cache performance. Therefore we need benchmark numbers first.
I have also added testing for A75 and A76 that we were missing.
[1] https://developer.arm.com/docs/swog309707/latest
Reviewers: fhahn, greened, samparker, dmgreen
Reviewed By: dmgreen
Subscribers: dmgreen, javed.absar, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65654
llvm-svn: 367894
This feature instructs the backend to allow locally defined global variable
addresses to contain a pointer tag in bits 56-63 that will be ignored by
the hardware (i.e. TBI), but may be used by an instrumentation pass such
as HWASAN. It works by adding a MOVK instruction to the regular ADRP/ADD
sequence that sets bits 48-63 to the corresponding bits of the global, with
the linker bounds check disabled on the ADRP instruction to prevent the tag
from causing a link failure.
This implementation of the feature omits the MOVK when loading from or storing
to a global, which is sufficient for TBI. If the same approach is extended
to MTE, assuming that 0 is not configured as a catch-all tag, we will most
likely also need the MOVK in this case in order to avoid a tag mismatch.
Differential Revision: https://reviews.llvm.org/D65364
llvm-svn: 367475
This makes the field wider than MachineOperand::SubReg_TargetFlags so that
we don't end up silently truncating any higher bits. We should still catch
any bits truncated from the MachineOperand field as a consequence of the
assertion in MachineOperand::setTargetFlags().
Differential Revision: https://reviews.llvm.org/D65465
llvm-svn: 367474
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Refactor the scheduling predicates based on `MCInstPredicate`. In this
case, `AArch64InstrInfo::isScaledAddr()`
Differential revision: https://reviews.llvm.org/D54777
llvm-svn: 347597
Summary:
Specifying X[8-15,18] registers as callee-saved is used to support
CONFIG_ARM64_LSE_ATOMICS in Linux kernel. As part of this patch we:
- use custom CSR list/mask when user specifies custom CSRs
- update Machine Register Info's list of CSRs with additional custom CSRs in
LowerCall and LowerFormalArguments.
Reviewers: srhines, nickdesaulniers, efriedma, javed.absar
Reviewed By: nickdesaulniers
Subscribers: kristof.beyls, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52216
llvm-svn: 342824
Summary:
Reserving registers x1-7 is used to support CONFIG_ARM64_LSE_ATOMICS in Linux kernel. This change adds support for reserving registers x1 through x7.
Reviewers: javed.absar, phosek, srhines, nickdesaulniers, efriedma
Reviewed By: nickdesaulniers, efriedma
Subscribers: niravd, jfb, manojgupta, nickdesaulniers, jyknight, efriedma, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D48580
llvm-svn: 341706
On Windows, if shouldAssumeDSOLocal returns false, it's either a
dllimport reference, or a reference that we should treat as non-local
and create a stub for.
Clean up AArch64Subtarget::ClassifyGlobalReference a little while
touching the flag handling relating to dllimport.
Differential Revision: https://reviews.llvm.org/D51590
llvm-svn: 341402
The runtime pseudo relocations can't handle the AArch64 format PC
relative addressing in adrp+add/ldr pairs. By using stubs, the potentially
dllimported addresses can be touched up by the runtime pseudo relocation
framework.
Differential Revision: https://reviews.llvm.org/D51452
llvm-svn: 341401
This adds the plumbing for the Tiny code model for the AArch64 backend. This,
instead of loading addresses through the normal ADRP;ADD pair used in the Small
model, uses a single ADR. The 21 bit range of an ADR means that the code and
its statically defined symbols need to be within 1MB of each other.
This makes it mostly interesting for embedded applications where we want to fit
as much as we can in as small a space as possible.
Differential Revision: https://reviews.llvm.org/D49673
llvm-svn: 340397
The implementation of shadow call stack on aarch64 is quite different to
the implementation on x86_64. Instead of reserving a segment register for
the shadow call stack, we reserve the platform register, x18. Any function
that spills lr to sp also spills it to the shadow call stack, a pointer to
which is stored in x18.
Differential Revision: https://reviews.llvm.org/D45239
llvm-svn: 329236
Re-commit of r322200: The testcase shouldn't hit machineverifiers
anymore with r322917 in place.
Large callframes (calls with several hundreds or thousands or
parameters) could lead to situations in which the emergency spillslot is
out of range to be addressed relative to the stack pointer.
This commit forces the use of a frame pointer in the presence of large
callframes.
This commit does several things:
- Compute max callframe size at the end of instruction selection.
- Add mirFileLoaded target callback. Use it to compute the max callframe size
after loading a .mir file when the size wasn't specified in the file.
- Let TargetFrameLowering::hasFP() return true if there exists a
callframe > 255 bytes.
- Always place the emergency spillslot close to FP if we have a frame
pointer.
- Note that `useFPForScavengingIndex()` would previously return false
when a base pointer was available leading to the emergency spillslot
getting allocated late (that's the whole effect of this callback).
Which made no sense to me so I took this case out: Even though the
emergency spillslot is technically not referenced by FP in this case
we still want it allocated early.
Differential Revision: https://reviews.llvm.org/D40876
llvm-svn: 322919
Revert for now as the testcase is hitting a pre-existing verifier error
that manifest as a failure when expensive checks are enabled (or
-verify-machineinstrs) is used.
This reverts commit r322200.
llvm-svn: 322231
Large callframes (calls with several hundreds or thousands or
parameters) could lead to situations in which the emergency spillslot is
out of range to be addressed relative to the stack pointer.
This commit forces the use of a frame pointer in the presence of large
callframes.
This commit does several things:
- Compute max callframe size at the end of instruction selection.
- Add mirFileLoaded target callback. Use it to compute the max callframe size
after loading a .mir file when the size wasn't specified in the file.
- Let TargetFrameLowering::hasFP() return true if there exists a
callframe > 255 bytes.
- Always place the emergency spillslot close to FP if we have a frame
pointer.
- Note that `useFPForScavengingIndex()` would previously return false
when a base pointer was available leading to the emergency spillslot
getting allocated late (that's the whole effect of this callback).
Which made no sense to me so I took this case out: Even though the
emergency spillslot is technically not referenced by FP in this case
we still want it allocated early.
Differential Revision: https://reviews.llvm.org/D40876
llvm-svn: 322200
The IRTranslator cannot generate these instructions at the moment so there's no
issue with not having implemented ISel for them yet. D40092 will add
G_ATOMIC_CMPXCHG_WITH_SUCCESS and G_ATOMICRMW_* to the IRTranslator and a
further patch will add support for lowering G_ATOMIC_CMPXCHG_WITH_SUCCESS into
G_ATOMIC_CMPXCHG with an external success check via the `Lower` action.
The separation of G_ATOMIC_CMPXCHG_WITH_SUCCESS and G_ATOMIC_CMPXCHG is
to import SelectionDAG rules while still supporting targets that prefer to
custom lower the original LLVM-IR-like operation.
llvm-svn: 319216
This reverts commit r310425, thus reapplying r310335 with a fix for link
issue of the AArch64 unittests on Linux bots when BUILD_SHARED_LIBS is ON.
Original commit message:
[GlobalISel] Remove the GISelAccessor API.
Its sole purpose was to avoid spreading around ifdefs related to
building global-isel. Since r309990, GlobalISel is not optional anymore,
thus, we can get rid of this mechanism all together.
NFC.
----
The fix for the link issue consists in adding the GlobalISel library in
the list of dependencies for the AArch64 unittests. This dependency
comes from the use of AArch64Subtarget that needs to know how
to destruct the GISel related APIs when being detroyed.
Thanks to Bill Seurer and Ahmed Bougacha for helping me reproducing and
understand the problem.
llvm-svn: 310969
This reverts commit r310115.
It causes a linker failure for the one of the unittests of AArch64 on one
of the linux bot:
http://lab.llvm.org:8011/builders/clang-ppc64le-linux-multistage/builds/3429
: && /home/fedora/gcc/install/gcc-7.1.0/bin/g++ -fPIC
-fvisibility-inlines-hidden -Werror=date-time -std=c++11 -Wall -W
-Wno-unused-parameter -Wwrite-strings -Wcast-qual
-Wno-missing-field-initializers -pedantic -Wno-long-long
-Wno-maybe-uninitialized -Wdelete-non-virtual-dtor -Wno-comment
-ffunction-sections -fdata-sections -O2
-L/home/fedora/gcc/install/gcc-7.1.0/lib64 -Wl,-allow-shlib-undefined
-Wl,-O3 -Wl,--gc-sections
unittests/Target/AArch64/CMakeFiles/AArch64Tests.dir/InstSizes.cpp.o -o
unittests/Target/AArch64/AArch64Tests
lib/libLLVMAArch64CodeGen.so.6.0.0svn lib/libLLVMAArch64Desc.so.6.0.0svn
lib/libLLVMAArch64Info.so.6.0.0svn lib/libLLVMCodeGen.so.6.0.0svn
lib/libLLVMCore.so.6.0.0svn lib/libLLVMMC.so.6.0.0svn
lib/libLLVMMIRParser.so.6.0.0svn lib/libLLVMSelectionDAG.so.6.0.0svn
lib/libLLVMTarget.so.6.0.0svn lib/libLLVMSupport.so.6.0.0svn -lpthread
lib/libgtest_main.so.6.0.0svn lib/libgtest.so.6.0.0svn -lpthread
-Wl,-rpath,/home/buildbots/ppc64le-clang-multistage-test/clang-ppc64le-multistage/stage1/lib
&& :
unittests/Target/AArch64/CMakeFiles/AArch64Tests.dir/InstSizes.cpp.o:(.toc+0x0):
undefined reference to `vtable for llvm::LegalizerInfo'
unittests/Target/AArch64/CMakeFiles/AArch64Tests.dir/InstSizes.cpp.o:(.toc+0x8):
undefined reference to `vtable for llvm::RegisterBankInfo'
The particularity of this bot is that it is built with
BUILD_SHARED_LIBS=ON
However, I was not able to reproduce the problem so far.
Reverting to unblock the bot.
llvm-svn: 310425
Its sole purpose was to avoid spreading around ifdefs related to
building global-isel. Since r309990, GlobalISel is not optional anymore,
thus, we can get rid of this mechanism all together.
NFC.
llvm-svn: 310115
With this change, the GlobalISel library gets always built. In
particular, this is not possible to opt GlobalISel out of the build
using the LLVM_BUILD_GLOBAL_ISEL variable any more.
llvm-svn: 309990
Summary:
This change gives a 0.25% speedup on execution time, a 0.82% improvement
in benchmark scores and a 0.20% increase in binary size on a Cortex-A53.
These numbers are the geomean results on a wide range of benchmarks from
the test-suite and a range of proprietary suites.
Reviewers: t.p.northover, aadg, silviu.baranga, mcrosier, rengolin
Reviewed By: rengolin
Subscribers: grimar, davide, aemerson, rengolin, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D35568
llvm-svn: 309494
Summary:
This change gives a 0.89% speed on execution time, a 0.94% improvement
in benchmark scores and a 0.62% increase in binary size on a Cortex-A57.
These numbers are the geomean results on a wide range of benchmarks from
the test-suite, SPEC2000, SPEC2006 and a range of proprietary suites.
The software optimization guide for the Cortex-A57 recommends 16 byte
branch alignment.
Reviewers: t.p.northover, mcrosier, javed.absar, kristof.beyls, sbaranga
Reviewed By: kristof.beyls
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D34954
llvm-svn: 307389
Summary:
This change gives a 0.34% speed on execution time, a 0.61% improvement
in benchmark scores and a 0.57% increase in binary size on a Cortex-A72.
These numbers are the geomean results on a wide range of benchmarks from
the test-suite, SPEC2000, SPEC2006 and a range of proprietary suites.
The software optimization guide for the Cortex-A72 recommends 16 byte
branch alignment.
Reviewers: t.p.northover, kristof.beyls, rengolin, sbaranga, mcrosier, javed.absar
Reviewed By: kristof.beyls
Subscribers: llvm-commits, aemerson
Differential Revision: https://reviews.llvm.org/D34961
llvm-svn: 307380
Summary:
This causes them to be re-computed more often than necessary but resolves
objections that were raised post-commit on r301750.
Reviewers: qcolombet, ab, t.p.northover, rovka, kristof.beyls
Reviewed By: qcolombet
Subscribers: igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D32861
llvm-svn: 303418
ARM Neon has native support for half-sized vector registers (64 bits). This
is beneficial for example for 2D and 3D graphics. This patch adds the option
to lower MinVecRegSize from 128 via a TTI in the SLP Vectorizer.
*** Performance Analysis
This change was motivated by some internal benchmarks but it is also
beneficial on SPEC and the LLVM testsuite.
The results are with -O3 and PGO. A negative percentage is an improvement.
The testsuite was run with a sample size of 4.
** SPEC
* CFP2006/482.sphinx3 -3.34%
A pretty hot loop is SLP vectorized resulting in nice instruction reduction.
This used to be a +22% regression before rL299482.
* CFP2000/177.mesa -3.34%
* CINT2000/256.bzip2 +6.97%
My current plan is to extend the fix in rL299482 to i16 which brings the
regression down to +2.5%. There are also other problems with the codegen in
this loop so there is further room for improvement.
** LLVM testsuite
* SingleSource/Benchmarks/Misc/ReedSolomon -10.75%
There are multiple small SLP vectorizations outside the hot code. It's a bit
surprising that it adds up to 10%. Some of this may be code-layout noise.
* MultiSource/Benchmarks/VersaBench/beamformer/beamformer -8.40%
The opt-viewer screenshot can be seen at F3218284. We start at a colder store
but the tree leads us into the hottest loop.
* MultiSource/Applications/lambda-0.1.3/lambda -2.68%
* MultiSource/Benchmarks/Bullet/bullet -2.18%
This is using 3D vectors.
* SingleSource/Benchmarks/Shootout-C++/Shootout-C++-lists +6.67%
Noise, binary is unchanged.
* MultiSource/Benchmarks/Ptrdist/anagram/anagram +4.90%
There is an additional SLP in the cold code. The test runs for ~1sec and
prints out over 2000 lines. This is most likely noise.
* MultiSource/Applications/aha/aha +1.63%
* MultiSource/Applications/JM/lencod/lencod +1.41%
* SingleSource/Benchmarks/Misc/richards_benchmark +1.15%
Differential Revision: https://reviews.llvm.org/D31965
llvm-svn: 303116