hange explores the fact that LDS reads may be reordered even if access
the same location.
Prior the change, algorithm immediately stops as soon as any memory
access encountered between loads that are expected to be merged
together. Although, Read-After-Read conflict cannot affect execution
correctness.
Improves hcBLAS CGEMM manually loop-unrolled kernels performance by 44%.
Also improvement expected on any massive sequences of reads from LDS.
Differential Revision: https://reviews.llvm.org/D25944
llvm-svn: 285919
This recommits r281323, which was backed out for two reasons. One, a selfhost failure, and two, it apparently caused Chromium failures. Actually, the latter was a red herring. The log has expired from the former, but I suspect that was a red herring too (actually caused by another problematic patch of mine). Therefore reapplying, and will watch the bots like a hawk.
For the common pattern (CMPZ (AND x, #bitmask), #0), we can do some more efficient instruction selection if the bitmask is one consecutive sequence of set bits (32 - clz(bm) - ctz(bm) == popcount(bm)).
1) If the bitmask touches the LSB, then we can remove all the upper bits and set the flags by doing one LSLS.
2) If the bitmask touches the MSB, then we can remove all the lower bits and set the flags with one LSRS.
3) If the bitmask has popcount == 1 (only one set bit), we can shift that bit into the sign bit with one LSLS and change the condition query from NE/EQ to MI/PL (we could also implement this by shifting into the carry bit and branching on BCC/BCS).
4) Otherwise, we can emit a sequence of LSLS+LSRS to remove the upper and lower zero bits of the mask.
1-3 require only one 16-bit instruction and can elide the CMP. 4 requires two 16-bit instructions but can elide the CMP and doesn't require materializing a complex immediate, so is also a win.
llvm-svn: 285893
This fixes selection of KANDN instructions and allows us to remove an extra set of patterns for KNOT and KXNOR.
Reviewers: delena, igorb
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26134
llvm-svn: 285878
2 new intrinsics covering AVX-512 compress/expand functionality.
This implementation includes syntax, DAG builder, operation lowering and tests.
Does not include: handling of illegal data types, codegen prepare pass and the cost model.
llvm-svn: 285876
Summary:
The recent change I made to consult the summary when deciding whether to
rename (to handle inline asm) in r285513 broke the distributed build
case. In a distributed backend we will only have a portion of the
combined index, specifically for imported modules we only have the
summaries for any imported definitions. When renaming on import we were
asserting because no summary entry was found for a local reference being
linked in (def wasn't imported).
We only need to consult the summary for a renaming decision for the
exporting module. For imports, we would have prevented importing any
references to NoRename values already.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26250
llvm-svn: 285871
This reverts commit r285732.
This change introduced a new assertion failure in the following
testcase at -O2:
typedef short __v8hi __attribute__((__vector_size__(16)));
__v8hi foo(__v8hi &V1, __v8hi &V2, unsigned mask) {
__v8hi Result = V1;
if (mask & 0x80)
Result[0] = V2[0];
return Result;
}
llvm-svn: 285866
the offsets and sizes of an element of the Mach-O file overlaps with
another element in the Mach-O file.
Some other tests for malformed Mach-O files now run into these
checks so their tests were also adjusted.
llvm-svn: 285860
Otherwise we set it always to zero, which is not correct,
and we assert inside alignTo (Assertion failed:
Align != 0u && "Align can't be 0.").
Differential Revision: https://reviews.llvm.org/D26173
llvm-svn: 285841
Using a pattern similar to that of YamlIO, this allows
us to have a single codepath for translating codeview
records to and from serialized byte streams. The
current patch only hooks this up to the reading of
CodeView type records. A subsequent patch will hook
it up for writing of CodeView type records, and then a
third patch will hook up the reading and writing of
CodeView symbols.
Differential Revision: https://reviews.llvm.org/D26040
llvm-svn: 285836
Summary:
The post-RA scheduler occasionally uses additional implicit operands when
the vector implicit operand as a whole is killed, but some subregisters
are still live because they are directly referenced later. Unfortunately,
this seems incredibly subtle to reproduce.
Fixes piglit spec/glsl-110/execution/variable-indexing/vs-temp-array-mat2-index-wr.shader_test
and others.
Reviewers: arsenm, tstellarAMD
Subscribers: kzhuravl, wdng, yaxunl, tony-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D25656
llvm-svn: 285835
Summary:
It was detected that the reassociate pass could enter an inifite
loop when analysing dead code. Simply skipping to analyse basic
blocks that are dead avoids such problems (and as a side effect
we avoid spending time on optimising dead code).
The solution is using the same Reverse Post Order ordering of the
basic blocks when doing the optimisations, as when building the
precalculated rank map. A nice side-effect of this solution is
that we now know that we only try to do optimisations for blocks
with ranked instructions.
Fixes https://llvm.org/bugs/show_bug.cgi?id=30818
Reviewers: llvm-commits, davide, eli.friedman, mehdi_amini
Subscribers: dberlin
Differential Revision: https://reviews.llvm.org/D26154
llvm-svn: 285793
As proposed on llvm-dev:
http://lists.llvm.org/pipermail/llvm-dev/2016-October/106595.html
This change also fixes an API oddity where BitstreamCursor::Read() would
return zero for the first read past the end of the bitstream, but would
report_fatal_error for subsequent reads. Now we always report_fatal_error
for all reads past the end. Updated clients to check for the end of the
bitstream before reading from it.
I also needed to add padding to the invalid bitcode tests in
test/Bitcode/. This is because the streaming interface was not checking that
the file size is a multiple of 4.
Differential Revision: https://reviews.llvm.org/D26219
llvm-svn: 285773
This is the conservatively correct way because it's easy to
move or replace a scalar immediate. This was incorrect in the case
when the register class wasn't known from the static instruction
definition, but still needed to be an SGPR. The main example of this
is inlineasm has an SGPR constraint.
Also start verifying the register classes of inlineasm operands.
llvm-svn: 285762
This will prevent following regression when enabling i16 support (D18049):
test/CodeGen/AMDGPU/ctlz.ll
test/CodeGen/AMDGPU/ctlz_zero_undef.ll
Differential Revision: https://reviews.llvm.org/D25802
llvm-svn: 285716
I think the former 'test50' had a typo making it functionally equivalent
to the former 'test49'; changed the predicate to provide more coverage.
llvm-svn: 285706
I wanted to implement this as a target independent expansion, however when
targets say they want to expand FP_TO_FP16 what they actually want is
the unsafe math expansion when possible and expansion to a libcall in all
other cases.
The only way to make this work as a target independent would be to add logic
to target's TargetLowering construction to mark theses nodes as Expand when
LegalizeDAG can use the unsafe expansion and mark them as LibCall when it
cannot. I think this would be possible, but I think it would be too fragile
and complex as it would require targets to keep their expansion logic up
to date with the code in LegalizeDAG.
Reviewers: bogner, ab, t.p.northover, arsenm
Subscribers: wdng, llvm-commits, nhaehnle
Differential Revision: https://reviews.llvm.org/D25999
llvm-svn: 285704
This patch introduces the combine:
(C1 shift (A add C2)) -> ((C1 shift C2) shift A)
iff A and C2 are both positive
If both A and C2 are know to be positive then we can safely split into 2 shifts, permitting the folding of the Inner shift.
Fix for the spec benchmark case mentioned by @nadav on PR15141 (assuming we can prove that the inputs as positive).
Differential Revision: https://reviews.llvm.org/D26000
llvm-svn: 285696
Note: Test is per differential review, but the other changed code in the review was for an optimisation that din't quite work. Nevertheless, the test is valid for the unoptimised version of the fix.
Differential Review: https://reviews.llvm.org/D24658
llvm-svn: 285692
[Reapplying r284580 and r285917 with fix and testing to ensure emitted jump tables for Thumb-1 have 4-byte alignment]
The TBB and TBH instructions in Thumb-2 allow jump tables to be compressed into sequences of bytes or shorts respectively. These instructions do not exist in Thumb-1, however it is possible to synthesize them out of a sequence of other instructions.
It turns out this sequence is so short that it's almost never a lose for performance and is ALWAYS a significant win for code size.
TBB example:
Before: lsls r0, r0, #2 After: add r0, pc
adr r1, .LJTI0_0 ldrb r0, [r0, #6]
ldr r0, [r0, r1] lsls r0, r0, #1
mov pc, r0 add pc, r0
=> No change in prologue code size or dynamic instruction count. Jump table shrunk by a factor of 4.
The only case that can increase dynamic instruction count is the TBH case:
Before: lsls r0, r4, #2 After: lsls r4, r4, #1
adr r1, .LJTI0_0 add r4, pc
ldr r0, [r0, r1] ldrh r4, [r4, #6]
mov pc, r0 lsls r4, r4, #1
add pc, r4
=> 1 more instruction in prologue. Jump table shrunk by a factor of 2.
So there is an argument that this should be disabled when optimizing for performance (and a TBH needs to be generated). I'm not so sure about that in practice, because on small cores with Thumb-1 performance is often tied to code size. But I'm willing to turn it off when optimizing for performance if people want (also note that TBHs are fairly rare in practice!)
llvm-svn: 285690
This bug was exposed by using nsw/nuw for more aggressive folds in:
https://reviews.llvm.org/rL284844
The changes mimic the IR demanded bits logic in InstCombiner::SimplifyDemandedUseBits(),
but we can't just flip flag bits in the DAG; we have to create a new node that has the
bits cleared.
This should fix:
https://llvm.org/bugs/show_bug.cgi?id=30841
llvm-svn: 285656
Generate the slowest possible codepath for noopt CodeGen. Even trying to be
clever with the negated jump can cause out-of-range jumps. Use a wide branch
instead. Although the code is modelled simplistically, the later optimizations
would recombine the branching into `cbz` if possible. This re-enables the
previous optimization as well as hopefully gives us working code in all cases.
Addresses PR30356!
llvm-svn: 285649
Summary:
There is no point to importing at -O0, since we won't inline. We should
also disable other cross-module optimizations.
(Plan to backport this fix to the 3.9 branch to fix PR30774)
Reviewers: pcc
Subscribers: johanengelen, mehdi_amini
Differential Revision: https://reviews.llvm.org/D25918
llvm-svn: 285648
Summary:
This has been replaced by the NVPTXInferAddressSpaces pass. We've had
the new one as the default with the old one accessible via a flag for
some months now, and we've had no problems.
Reviewers: tra
Subscribers: llvm-commits, jholewinski, jingyue, mgorny
Differential Revision: https://reviews.llvm.org/D26165
llvm-svn: 285642
the offsets and sizes of an element of the file overlaps with
another element in the Mach-O file.
This shows the approach to this testing for three elements
and contains for tests for their overlap. Checking for all the
remain elements will be added next.
llvm-svn: 285632
DW_TAG_atomic_type was already included in Dwarf.defs and emitted correctly,
however Verifier didn't recognize it as valid.
Thus we introduce the following changes:
* Make DW_TAG_atomic_type valid tag for IR and DWARF (enabled only with -gdwarf-5)
* Add it to related docs
* Add DebugInfo tests
Differential Revision: https://reviews.llvm.org/D26144
llvm-svn: 285624
On Darwin, simple C null-terminated constant strings normally end up in the __TEXT,__cstring section of the resulting Mach-O binary. When instrumented with ASan, these strings are transformed in a way that they cannot be in __cstring (the linker unifies the content of this section and strips extra NUL bytes, which would break instrumentation), and are put into a generic __const section. This breaks some of the tools that we have: Some tools need to scan all C null-terminated strings in Mach-O binaries, and scanning all the contents of __const has a large performance penalty. This patch instead introduces a special section, __asan_cstring which will now hold the instrumented null-terminated strings.
Differential Revision: https://reviews.llvm.org/D25026
llvm-svn: 285619
Fixes Bug 30808.
Note that passing subtarget information to predicates seems too complicated, so gfx8-specific def smrd_offset_20 introduced.
Old gfx6/7-specific def renamed to smrd_offset_8 for clarity.
Lit tests updated.
Differential Revision: https://reviews.llvm.org/D26085
llvm-svn: 285590
with fix: edited invalid-section-index2.elf input to pass the new check and
fail on the same place it was intended to fail.
Original commit message:
Elf.h already has code checking that section table does not go past end of file.
Problem is that this check may not work on values greater than UINT64_MAX / Header->e_shentsize
because of calculation overflow.
Parch fixes the issue.
Differential revision: https://reviews.llvm.org/D25432
llvm-svn: 285586
This patch implements two changes:
- Move processor feature definition into a new file SystemZFeatures.td,
and provide explicit lists of supported and unsupported features for
each level of the z/Architecture. This allows specifying unsupported
features in the scheduler definition files for each processor.
- Add optional aliases for the -mcpu processor names according to the
level of the z/Architecture, for compatibility with other compilers
on the platform. The supported aliases are:
-mcpu=arch8 equals -mcpu=z10
-mcpu=arch9 equals -mcpu=z196
-mcpu=arch10 equals -mcpu=zEC12
-mcpu=arch11 equals -mcpu=z13
llvm-svn: 285577
Currently, when using an instruction that is not supported on the
currently selected architecture, the LLVM assembler is likely to
diagnose an "invalid operand" instead of a "missing feature".
This is because many operands require a custom parser in order to
be processed correctly, and if an instruction is not available
according to the current feature set, the generated parser code
will also not detect the associated custom operand parsers.
Fixed by temporarily enabling all features while parsing operands.
The missing features will then be correctly detected when actually
parsing the instruction itself.
llvm-svn: 285575
LLVM currently treats the first operand of MVCK as if it were a
regular base+index+displacement address. However, it is in fact
a base+displacement combined with a length register field.
While the two might look syntactically similar, there are two
semantic differences:
- %r0 is a valid length register, even though it cannot be used
as an index register.
- In an expression with just a single register like 0(%rX), the
register is treated as base with normal addresses, while it is
treated as the length register (with an empty base) for MVCK.
Fixed by adding a new operand parser class BDRAddr and reworking
the assembler parser to distinguish between address + length
register operands and regular addresses.
llvm-svn: 285574
There is a bug describing poor cost model for floating point operations:
Bug 29083 - [X86][SSE] Improve costs for floating point operations. This
patch is the second one in series of patches dealing with cost model.
Differential Revision: https://reviews.llvm.org/D25722
llvm-svn: 285564
possible pointer-wrap-around concerns, in some cases.
Before this patch, collectConstStridedAccesses (part of interleaved-accesses
analysis) called getPtrStride with [Assume=false, ShouldCheckWrap=true] when
examining all candidate pointers. This is too conservative. Instead, this
patch makes collectConstStridedAccesses use an optimistic approach, calling
getPtrStride with [Assume=true, ShouldCheckWrap=false], and then, once the
candidate interleave groups have been formed, revisits the pointer-wrapping
analysis but only where it matters: namely, in groups that have gaps, and where
the gaps are not at the very end of the group (in which case the loop is
peeled). This second time getPtrStride is called with [Assume=false,
ShouldCheckWrap=true], but this could further be improved to using Assume=true,
once we also add the logic to track that we are not going to meet the scev
runtime checks threshold.
Differential Revision: https://reviews.llvm.org/D25276
llvm-svn: 285517
Summary:
When we have an aliasee that is linkonce, while we can't convert
the non-prevailing copies to available_externally, we still need to
convert the prevailing copy to weak. If a reference to the aliasee
is exported, not converting a copy to weak will result in undefined
references when the linkonce is removed in its original module.
Add a new test and update existing tests.
Reviewers: mehdi_amini
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26076
llvm-svn: 285512
Try harder to detect obfuscated min/max patterns: the initial pattern was added with D9352 / rL236202.
There was a bug fix for PR27137 at rL264996, but I think we can do better by folding the corresponding
smax pattern and commuted variants.
The codegen tests demonstrate the effect of ValueTracking on the backend via SelectionDAGBuilder. We
can't expose these differences minimally in IR because we don't have smin/smax intrinsics for IR.
Differential Revision: https://reviews.llvm.org/D26091
llvm-svn: 285499
Currently computeKnownBits returns the common known zero/one bits for all elements of vector data, when we may only be interested in one/some of the elements.
This patch adds a DemandedElts argument that allows us to specify the elements we actually care about. The original computeKnownBits implementation calls with a DemandedElts demanding all elements to match current behaviour. Scalar types set this to 1.
The approach was found to be easier than trying to add a per-element known bits solution, for a similar usefulness given the combines where computeKnownBits is typically used.
I've only added support for a few opcodes so far (the ones that have proven straightforward to test), all others will default to demanding all elements but can be updated in due course.
DemandedElts support could similarly be added to computeKnownBitsForTargetNode in a future commit.
This looked like this had caused compile time regressions on some buildbots (and was reverted in rL285381), but appears to have just been a harmless bystander!
Differential Revision: https://reviews.llvm.org/D25691
llvm-svn: 285494
Instead of asserting that the shift count is != 0 we just bail out
as it's not profitable trying to optimize a node which will be
removed anyway.
Differential Revision: https://reviews.llvm.org/D26098
llvm-svn: 285480
Summary:
Flat instruction can return out of order, so we need always need to wait
for all the outstanding flat operations.
Reviewers: tony-tye, arsenm
Subscribers: kzhuravl, wdng, nhaehnle, llvm-commits, yaxunl
Differential Revision: https://reviews.llvm.org/D25998
llvm-svn: 285479
Also add glc bit to the scalar loads since they exist on VI
and change the caching behavior.
This currently has an assembler bug where the glc bit is incorrectly
accepted on SI/CI which do not have it.
llvm-svn: 285463
Summary:
In isel, transform
Num % Den
into
Num - (Num / Den) * Den
if the result of Num / Den is already available.
Reviewers: tra
Subscribers: hfinkel, llvm-commits, jholewinski
Differential Revision: https://reviews.llvm.org/D26090
llvm-svn: 285461
Summary:
This "pass" eagerly creates div and rem instructions even when only one
is needed -- it relies on a later pass (machine DCE?) to clean them up.
This is problematic not just from a cleanliness perspective (this pass
is running during CodeGenPrepare, so should leave the IR in a better
state), but it also creates a problem for instruction selection. If we
always have a div+rem, isel will always select a divrem instruction (if
possible), even when a single div or rem would do.
Specifically, in NVPTX, we want to compute rem from the output of div,
if available. But if a div is not available, we want to leave the rem
alone. This transformation is overeager if div is always available.
Because this code runs as part of CodeGenPrepare, it's nontrivial to
write a test for this change. But this will effectively be tested by
a later patch which adds the aforementioned change to NVPTX isel.
Reviewers: tra
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D26088
llvm-svn: 285460
Summary:
In BypassSlowDivision's short-dividend path, we would create e.g.
udiv exact i32 %a, %b
"exact" here means that we are asserting that %a is a multiple of %b.
But we have no reason to believe this must be true -- this is just a
bug, as far as I can tell.
Reviewers: tra
Subscribers: jholewinski, llvm-commits
Differential Revision: https://reviews.llvm.org/D26097
llvm-svn: 285459
When LivePhysRegs adds live-in registers, it recognizes ~0 as a special
lane mask indicating the entire register. If the lane mask is not ~0,
it will only add the subregisters that overlap the specified lane mask.
The problem is that if a live-in register does not have subregisters,
and the lane mask is not ~0, it will not be added to the live set.
(The given lane mask may simply be the lane mask of its register class.)
If a register does not have subregisters, add it to the live set if
the lane mask is non-zero.
Differential Revision: https://reviews.llvm.org/D26094
llvm-svn: 285440
It's possible to have a use of the private resource descriptor or
scratch wave offset registers even though there are no allocated
stack objects. This would result in continuing to use the maximum
number reserved registers. This could go over the number of SGPRs
available on VI, or violate the SGPR limit requested by
the function attributes.
llvm-svn: 285435