Previously we emit two or more identical definitions for an
exported symbol if the same /export option is given more than
once. This patch fixes that bug.
llvm-svn: 218433
lib.exe prints a warning if a symbol in a module definition file has
both the PRIVATE attribute and an ordinal like this.
EXPORTS
foo @1 PRIVATE
This patch suppresses that.
llvm-svn: 218395
Currently you can omit the leading underscore from exported
symbol name. LLD will look for mangled name for you. But it won't
look for C++ mangled name.
This patch is to support that.
If "sym" is specified to be exported, the linker looks for not
only "sym", but also "_sym" and "?sym@@<whatever>", so that you
can export a C++ function without decorating it.
llvm-svn: 218355
Exported symbol name resolution is two-pass. In the first pass,
we try to resolve that as a regular undefined symbol. If it fails,
we look for mangled name for the symbol and rename the undefined
symbol and try again.
After all name resolution is done, we look for an atom for each
exported symbol again, to construct the export table. In this
process we try the regular names first, and then try mangled names.
But at this moment we should have knew which name is correct.
This patch is to keep the information we get in the first process
to use it later.
llvm-svn: 218354
The export table descriptor is a data structure to keep information
about the export table. It contains a symbol name, and the name may
or may not be mangled.
We need unmangled names for the export table, so we demangle them
before writing them to the export table.
Obviously this is not a correct round-trip conversion. That could
drop a leading underscore from a symbol because that's
indistinguishable from a mangled name.
What we need to do is to keep unmangled names. This patch does that.
llvm-svn: 218345
/machine:ebc was previously recognized but rejected. Unknown architecture
names were handled differently but eventually rejected too. We don't need
to distinguish them.
llvm-svn: 218344
This patch changes the type of export table set from std::set to
std::vector. The new code is slightly inefficient, but because
export table elements are actually mutable, std::vector is better
here. No functionality change.
llvm-svn: 218343
If two or more /export options are given for the same symbol, we should
always print a warning message and use the first one regardless of other
parameters.
Previously there was a case that the first parameter is not used.
llvm-svn: 218342
A symbol in a module definition file may be annotated with the
PRIVATE keyword like this.
EXPORTS
func PRIVATE
The PRIVATE keyword does not affect the resulting .dll file.
But it prevents the symbol to be listed in the .lib (import
library) file.
llvm-svn: 218273
Atoms are ordered in the output file by ordinal. File has file ordinal,
and atom has atom ordinal which is unique within the file.
No two atoms should have the same combination of ordinals.
However that contract was not satisifed for alias atoms. Alias atom
is defined by /alternatename:sym1=sym2. In this case sym1 is defined
as an alias for sym2. sym1 always got ordinal 0.
As a result LLD failed with an assertion failure.
This patch assigns ordinal to alias atoms.
llvm-svn: 218158
Cache the machine type value of the linking context. We need this in order to
calculate the virtual address of the atom when resolving function symbols.
Windows on ARM must check if the atom is a function and if so, set the Thumb bit
for the returned virtual address. Failure to do so will result in an abnormal
exit due to a trap caused by invalid instruction decoding. The same information
can be used to determine the relocation type that was previously being done via
is64 to select between x86 and x86_64.
llvm-svn: 218106
Accept /machine:arm as an argument. This is changed to support ARM NT.
Although there is no way to differentiate between ARM (Windows CE) and ARM NT
(Windows on ARM), since LLVM currently only supports Windows on ARM, simply take
/machine:arm to mean Windows on ARM.
llvm-svn: 218105
Rather than saving whether we are targeting 64-bit x86 (x86_64), simply convert
the single use of that information to the actual relocation type. This will
permit the selection of non-x86 relocation types (e.g. for WoA support).
Inline the access of the machine type field as it is relatively cheap (a couple
of pointer dereferences) rather than storing the relocation type as a member
variable.
llvm-svn: 218104
When we encounter an unknown machine type, we print out the machine type magic.
However, we would print out the magic in decimal rather than hex. Perform this
conversion to make it easier to identify what machine is unsupported.
llvm-svn: 218103
I made LLD to report an error if /safeseh:no option is given on x64,
but it turned out MSVC link.exe doesn't report error on it.
Removing the check.
llvm-svn: 218077
The contents from section .CRT$XLA to .CRT$XLZ is an array of function
pointers. They are called by the runtime when a new thread is created
or (gracefully) terminated.
You can make your own initialization function to be called by that
mechanism. All you have to do is:
- Define a pointer to a function in a .CRT$XL* section using pragma
- Make an external reference to "__tls_used" symbol
That technique is used in many projects. This patch is to support that.
What this patch does is to set the relative virtual address of
"__tls_used" to the PECOFF directory table. __tls_used is actually a
struct containing pointers to a symbol in .CRT$XLA and another symbol
in .CRT$XLZ. The runtime looks at the directory table, gets the address
of the struct, and call the function pointers between XLA and XLZ.
llvm-svn: 218007
lld shouldn't directly use the COFF header nor should it use raw
coff_symbols. Instead, query the header properties from the
COFFObjectFile and use COFFSymbolRef to abstractly reference COFF
symbols.
This is just enough to get lld compiling with the changes to
llvm::object. Bigobj specific testing will come later.
Differential Revision: http://reviews.llvm.org/D5280
llvm-svn: 217497
I hope this is the last fix for x64 relocations as I've wasted
a few days on this.
This caused a mysterious issue that some C++ programs crash on
startup. It was because a null pointer is passed as argv to main.
__tmainCRTStartup calls main, but before that it calls all
initialization routines between .text$xc_a and .text$xc_z.
pre_cpp_init is one of such routines, and it is the one who
initializes a heap pointer for argv for later use. That routine
was not called for some reason.
It turned out that __tmainCRTStartup was skipping a block of
code because of the relocation bug. A condition in the function
depends on a memory load, and that memory load was referring
a wrong location. As a result a jump instruction took the
wrong branch, skipping pre_cpp_init and so on.
This patch fixes the issue. Also added more tests to fix them
once and for all.
llvm-svn: 216772
When a relocation is applied to a location, the new value needs
to be added to the existing value at the location. Existing
value is in most cases zero, but if not, the current code does
not work.
llvm-svn: 216680
Image Base field in the PE/COFF header is used as hint for the loader.
If the loader can load the executable at the specified address, that's
fine, but if not, it has to load it at a different address.
If that happens, the loader has to fix up the addresses in the
executable by adding the offset. The list of addresses that need to
be fixed is in .reloc section.
This patch is to emit x64 .reloc section contents.
llvm-svn: 216636
IMAGE_REL_AMD64_ADDR64 relocation should set 64-bit *VA* (virtual
address) instead of *RVA* (relative virtual address), so we have
to add the iamge base to the target's RVA.
llvm-svn: 216512
The implementation of AMD64 relocations was imcomplete
and wrong. On AMD64, we of course have to use AMD64
relocations instead of i386 ones. This patch fixes the
issue.
LLD is now able to link hello64.obj (created from
hello64.asm) against user32.lib and kernel32.lib to
create a Win64 binary.
llvm-svn: 216253
/INCLUDE arguments passed as command line options are handled in the
same way as Unix -u. All option values are converted to an undefined
symbol and added to a dummy input file, so that the specified symbols
are resolved.
One tricky thing on Windows is that the option is also allowed to
appear in the object file's directive section. At the time when
it's being read, all (regular) command line options have already
been processed. We cannot add undefined atoms to the dummy file
anymore.
Previously, we added such /INCLUDE to a set that has already been
processed. As a result the options were ignored.
This patch fixes the issue. Now, /INCLUDE symbols in the directive
section are handled as real undefined symbol in the COFF file.
We create an undefined symbol for each /INCLUDE argument and add
it to the file being parsed.
llvm-svn: 214824
The PE/COFF spec says that SizeOfRawData field in the section
header must be a multiple of FileAlignment from the optional
header. LLD emits 512 as FileAlignment, so it must have been
a multiple of 512.
LLD did not follow that. It emitted the actual section size
without the last padding as the SizeOfRawData. Although it's
not correct as per the spec, the Windows loader doesn't seem
to actually bother to check that. Executables created by LLD
worked fine.
However, tools dealing with executalbe files may expect it
to be the correct value, and one instance of it is mt.exe
tool distributed as a part of Windows SDK.
If CMake is invoked with "-E vs_link_exe" option, it silently
run mt.exe to embed a resource file to the resulting file.
And mt.exe sometimes breaks an input file if it's section
header does not follow the standard. That caused a misterous
error that CMake with Ninja occasionally produces a broken
executable.
This patch fixes the section header to make mt.exe and
other tools happy.
llvm-svn: 214453
The entry point file needs to be processed after all other
object files and before all .lib files. It was processed
after .lib files. That caused an issue that the entry point
function was not resolved from the standard library files.
llvm-svn: 213804
On Windows there are four "main" functions -- main, wmain, WinMain,
or wWinMain. Their parameter types are diffferent. The standard
library provides four different entry functions (i.e.
{w,}{WinMain,main}CRTStartup) for them. You need to use the right
entry routine for your "main" function.
If you give an /entry option, the specified name is used
unconditionally.
Otherwise, the linker needs to select the right one based on
user-supplied entry point function. This can be done after the
linker reads all the input files.
This patch moves the code to determine the entry point function
from the driver to a virtual input file. It also implements the
correct logic for the entry point function selection.
llvm-svn: 213713
The code to manage resolvable symbols is now separated from
ExportedSymbolRenameFile so that other class can reuse it.
I'm planning to use it to find the entry function symbol
based on resolvable symbols.
llvm-svn: 213322
Previously we invoked cvtres.exe for each compiled Windows
resource file. The generated files were then concatenated
and embedded to the executable.
That was not the correct way to merge compiled Windows
resource files. If you just concatenate generated files,
only the first file would be recognized and the rest would
be ignored as trailing garbage.
The right way to merge them is to call cvtres.exe with
multiple input files. In this patch we do that in the
Windows driver.
llvm-svn: 212763
Previously the alignment of the .bss section was not
properly set because of a bug in AtomizeDefinedSymbolsInSection.
We set the alignment of the section at the end of the function,
but we use an eraly return for the .bss section, so the code had
been skipped.
llvm-svn: 212571
COFF supports a feature similar to ELF's section groups. This
patch implements it.
In ELF, section groups are identified by their names, and they are
treated somewhat differently from regular symbols. In COFF, the
feature is realized in a more straightforward way. A section can
have an annotation saying "if Nth section is linked, link this
section too."
I added a new reference type, kindAssociate. If a target atom is
coalesced away, the referring atom is removed by Resolver, so that
they are treated as a group.
Differential Revision: http://reviews.llvm.org/D4028
llvm-svn: 211106
COFF supports a feature similar to ELF's section groups. This
patch implements it.
In ELF, section groups are identified by their names, and they are
treated somewhat differently from regular symbols. In COFF, the
feature is realized in a more straightforward way. A section can
have an annotation saying "if Nth section is linked, link this
section too."
Implementing such feature is easy. We can add a reference from a
target atom to an original atom, so that if the target is linked,
the original atom is also linked. If not linked, both will be
dead-stripped. So they are treated as a group.
I added a new reference type, kindAssociate. It does nothing except
preventing referenced atoms from being dead-stripped.
No change to the Resolver is needed.
Reviewers: Bigcheese, shankarke, atanasyan
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D3946
llvm-svn: 210240
This provides support for the autoconfing & make build style.
The format, style and implementation follows that used within the llvm and clang projects.
TODO: implement out-of-source documentation builds.
llvm-svn: 210177
/alternatename is a command line option to define a weak alias. You
can use it as /alternatename:foo=bar to define "foo" as a weak alias
for "bar".
Because it's a command line option, the weak alias mapping is in the
LinkingContext object, and not in a object file being read.
Previously, we looked up the mapping each time we read a new symbol
from a file, to check if there is a weak alias defined for the symbol.
That's not wrong, but had made function signature's a bit complicated --
we had to pass the mapping object to many functions. Now their
parameter lists are much cleaner.
This also has another (unrealized) benefit. parseFile() now read a
file and then add alias symbols to the file. In the first pass a
LinkingContext object is not used at all. That should make it easy
to read files from archive files speculatively, as the first pass
is free from side effect.
llvm-svn: 209486
addResolvableSymbols() queues input files, and readAllSymbols() reads
from them. In practice it's currently safe because they are called from
a single thread. But it's not guaranteed.
Also, acquiring the same mutex is needed not to see inconsistent memory
contents that is allowed in the C++ memory model.
llvm-svn: 209254
ExportedSymbolRenameFile is not always used. In most cases we don't
need to read given files at all. So lazy load would help. This doesn't
change the meaining of the program.
llvm-svn: 208818
As written in the comment in this patch, symbol names specified with
/export option is resolved in a special way; for /export:foo, linker
finds a foo@<number> symbol if such symbols exists.
On Windows, a function in stdcall calling convention is mangled with
a leading underscore and following "@" and numbers. This name
mangling is kind of automatic, so you can sometimes omit _ and @number
when specifying a symbol. /export option is that case.
Previously, if a file in an archive file foo.lib provides a symbol
_fn@8, and /export:fn is specified, LLD failed to resolve the symbol.
It only tried to find _fn, and failed to find _fn@8. With this patch,
_fn@8 will be searched on the second iteration.
Differential Revision: http://reviews.llvm.org/D3736
llvm-svn: 208754
We did not actively try to resolve dllexported symbols specified
by /export or by a module definition file. So if exported symbols
would be resolved for other reasons, like other symbols refer to
them, that was fine, but if (unreferenced) exported symbols were
in an archive file, and no one refers to that file in the archive,
they remained unresolved.
That would obviously cause the issue that dllexported symbols are
not in a resultant DLL.
In this patch, we create an undefined symbol for each dllexported
symbol, to let the core linker to resolve it.
llvm-svn: 208452
Previously the handling of exported symbol was wrong if it's
specified in a module definition file in the form of
<externalname>=<internalname>. Export the correct symbol.
llvm-svn: 208446
isAlias always returns false and no one is using it. It was
originally added Atom to query if an atom is an alias for another
atom, assuming that alias atoms are different from normal atoms.
We now support atom aliasing, but the way that's implemented is
in a different way than what isAlias assumed. An alias atom is
just a regular defined atom with no content, and it has a layout-
before edge to alias-to atom so that they are layed out at the
same location in the result. So this is dead code, and it doesn't
make much sense to keep it.
llvm-svn: 207884
Export definitions in a module definition file is as follows:
exportedname[=internalname] [@ordinal [NONAME]] [PRIVATE] [DATA]
Previously we did not support =internalname, so users couldn't export
symbols from a DLL with a different name.
llvm-svn: 207827
When creating a .lib file, we should strip the leading underscore,
but should not strip stdcall atsign suffix. Otherwise produced .lib
files cannot be linked.
llvm-svn: 207729
Previously the input file for the lib.exe command would be removed
as soon as the command exits, so we couldn't write a test to check
the file contents are correct.
This patch adds /lldmoduledeffile: option to retain a copy of the
temporary file at the given file path, so that you can see the file
if you want.
llvm-svn: 207727
Linker should create _imp_ symbols for local use only when such
symbols cannot be resolved in any other way. If it overrides real
imported symbols, such symbols remain virtually unresolved without
error, causing odd issues. I observed that a program linked with
LLD entered an infinite loop before reaching main() because of
this issue.
This patch moves the virtual file creating _imp_ symbols to the
very end of the input file list. Previously, the file is at the end
of the library file group. Linker might revisit the group many times,
so it was not really at the end of the input file list.
llvm-svn: 207605
Implicit symbol for local use implemented in r207141 was not fully
compatible with MSVC link.exe. In r207141, I implemented the feature
in such way that implicit symbols are defined only when they are
exported with /EXPORT option.
After that I found that implicit symbols are defined not only for
dllexported symbols but for all defined symbols. Actually _imp_
implicit symbols have no relationship with the dllexport feature. You
could add _imp_ to any symbol to get a pointer to the symbol, whether
the symbol is dllexported or not. It looks pretty weird to me but
that's what we want if link.exe behaves that way.
Here is a bit about the implementation: Creating all implicit symbols
beforehand is going to be a huge waste of resource. This feature is
rarely used, and MSVC link.exe even prints out a warning message when
it finds this feature is being used. So we create implicit symbols
on demand. There is an archive file that creates implicit symbols when
they are needed.
llvm-svn: 207476
This patch is to fix a compatibility issue with MSVC link.exe as to
use of dllexported symbols inside DLL.
A DLL exports two symbols for a function. One is non-decorated one,
and the other is with __imp_ prefix. The former is a function that
you can directly call, and the latter is a pointer to the function.
These dllexported symbols are created by linker for programs that
link against the DLL. So, I naturally believed that __imp_ symbols
become available when you once create a DLL and link against it, but
they don't exist until then. And that's not true.
MSVC link.exe is smart enough to allow users to use __imp_ symbols
locally. That is, if a symbol is specified with /export option, it
implicitly creates a new symbol with __imp_ prefix as a pointer to
the exported symbol. This feature allows the following program to
be linked and run, although _imp__hello is not defined in this code.
#include <stdio.h>
__declspec(dllexport)
void hello(void) { printf("Hello\n"); }
extern void (*_imp__hello)(void);
int main() {
_imp__hello();
return 0;
}
MSVC link.exe prints out the following warning when linking it.
LNK4217: locally defined symbol _hello imported in function _main
Using __imp_ symbols locally is I think not a good coding style. One
should just take an address using "&" operator rather than appending
__imp_ prefix. However, there are programs in the wild that depends
on this link.exe's behavior, so we need this feature.
llvm-svn: 207141
Not all symbols are decorated with an underscore in x86. You can
write undecorated symbols in assembly, for example. Thus this
assertion is too strong.
llvm-svn: 207125
We don't use sections with IMAGE_SYM_DEBUG attribute so we basically
want to the symbols for them when reading symbol table. When we skip
them, we need to skip auxiliary symbols too. Otherwise weird error
would happen because aux symbols would be interpreted as regular ones.
llvm-svn: 206931
definition below all of the header #include lines, LLD edition.
IF you want to know more details about this, you can see the recent
commits to Debug.h in LLVM. This is just the LLD segment of a cleanup
I'm doing globally for this macro.
llvm-svn: 206851
Seems getSomething() is more common naming scheme than just a noun
to get something, so renaming these members.
Differential Revision: http://llvm-reviews.chandlerc.com/D3285
llvm-svn: 205589
"x.empty()" is more idiomatic than "x.size() == 0". This patch is to
add such method and use it in LLD.
Differential Revision: http://llvm-reviews.chandlerc.com/D3279
llvm-svn: 205558
This patch is to support --defsym option for ELF file format/GNU-compatible
driver. Currently it takes a symbol name followed by '=' and a number. If such
option is given, the driver sets up an absolute symbol with the specified
address. You can specify multiple --defsym options to define multiple symbols.
GNU LD's --defsym provides many more features. For example, it allows users to
specify another symbol name instead of a number to define a symbol alias, or it
even allows a symbol plus an offset (e.g. --defsym=foo+3) to define symbol-
relative alias. This patch does not support that, but will be supported in
subsequent patches.
Differential Revision: http://llvm-reviews.chandlerc.com/D3208
llvm-svn: 205029
COMDAT_SELECT_LARGEST is a COMDAT type that make linker to choose the largest
definition from among all of the definition of a symbol. If the size is the
same, the choice is arbitrary.
Differential Revision: http://llvm-reviews.chandlerc.com/D3011
llvm-svn: 204172
The COFF spec says that the SectionNumber field in the symbol table is 16 bit
signed type, but MSVC treats the field as if it is unsigned.
llvm-svn: 203901
This results in some simplifications to the code where an OwningPtr had to
be used with the previous api and then ownership moved to a unique_ptr for
the rest of lld.
llvm-svn: 203809
An object whose machine type header value is unknown looks a bit odd but
is valid. If an object contains only machine-type-independent data, you
can leave the type field unspecified. Some files in oldname.lib are such
object files.
llvm-svn: 203752
Summary:
COMDAT_SELECT_SAME_SIZE is a COMDAT type that I presume exist only in COFF.
The semantics of the type is that linker should merge such COMDAT sections if
their sizes are the same. Otherwise it's an error.
Reviewers: Bigcheese, shankarke, kledzik
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2996
llvm-svn: 203308
Just like x86 exception handler table, the table for x64 needs to be sorted
so that runtime can binary search on it. Unlike x86, the table entry for x64
has multiple fields, and they need to be sorted according to its BeginAddress
field. This patch also fixes a bug in relocations.
llvm-svn: 202874
It looks like the contents of the table need to be sorted according to its
value, so that the runtime can find the entry by binary search. I'm not 100%
sure if we really have to do that, but at least I can say it's safe to do
because the contents of .sxdata is just a list of exception handlers' RVAs.
llvm-svn: 202550
If all input files are compatible with Structured Exception Handling, linker
is supposed to create an exectuable with a table for SEH handlers. The table
consists of exception handlers entry point addresses.
The basic idea of SEH in x86 Microsoft ABI is to list all valid entry points
of exception handlers in an read-only memory, so that an attacker cannot
override the addresses in it. In x86 ABI, data for exception handling is mostly
on stack, so it's volnerable to stack overflow attack. In order to protect
against it, Windows runtime uses the table to check a return address, to
ensure that the address is really an valid entry point for an exception handler.
Compiler emits a list of exception handler functions to .sxdata section. It
also emits a marker symbol "@feat.00" to indicate that the object is compatible
with SEH. SEH is a relatively new feature for COFF, and mixing SEH-compatible
and SEH-incompatible objects will result in an invalid executable, so is the
marker.
If all input files are compatible with SEH, LLD emits a SEH table. SEH table
needs to be pointed by Load Configuration strucutre, so when emitting a SEH
table LLD emits it too. The address of a Load Configuration will be stored to
the file header.
llvm-svn: 202248
This restores the debug output to how it was before r197727 broke it. This
went undetected because the corresponding test was never run due to broken
feature detection.
llvm-svn: 202079
Currently LLD always print a warning message if the same symbol is specified
more than once for /export option. It's a bit annoying because specifying the
same symbol with compatible options is actually safe and considered as a
normal use case. This patch makes LLD to warn only when incompatible export
options are given.
llvm-svn: 198104
Each export symbol descriptor has unique name attribute, so std::set is
better container than std::vector for it. No functionality change.
llvm-svn: 198102
Currently .drectve section contents are parsed after other sections are parsed.
That order may result in wrong results if other sections depend on command line
options in the directive section.
For example, if a weak symbol is defined using /alternatename option in the
directive section, we have to read it first and then read the text section
contents. Otherwise the weak symbol won't be defined.
This patch changes the order to fix the issue.
llvm-svn: 198071
There are many object files in the standard library who have empty .drective
sections. Parsing the empty string is not wrong but a waste.
llvm-svn: 198067
Subsystem field in the PE/COFF file header has no meanining for the DLL.
It looks like MSVC link.exe sets the default subsystem (Windows GUI) to
the field if no /subsystem option is specified.
llvm-svn: 198015
If a symbol in an import library is marked as "data", the linker will not
create a jump table entry for the symbol, since jump table makes sense only
for a symbol pointing to a function.
I don't think NONAME attribute has a meaning when creating an import library.
The attribute is emitted for debugging purpose.
llvm-svn: 197803
If the linker is instructed to create a DLL, it will also create an import
library (.lib file) to describe the symbols exported by the DLL. This patch is
to create the import library file.
There is a convenient command "lib.exe" which can create an import library
from a module definition file (.def file). The command is used in this patch.
llvm-svn: 197801
Default ordinals were assigned in EdataPass, and the assigned values were
then discarded in the pass. No code other than EdataPass would not be able
to get all of the information about ordinals. That's not ideal since I'm
writing code to emit an Import Library file, which also needs ordinals.
This is a patch to move the code to assign default ordinals from EdataPass
to LinkingContext::verify(), so that assigned ordinals will be available
anywhere.
No functionality change.
llvm-svn: 197797
The main changes are in:
include/lld/Core/Reference.h
include/lld/ReaderWriter/Reader.h
Everything else is details to support the main change.
1) Registration based Readers
Previously, lld had a tangled interdependency with all the Readers. It would
have been impossible to make a streamlined linker (say for a JIT) which
just supported one file format and one architecture (no yaml, no archives, etc).
The old model also required a LinkingContext to read an object file, which
would have made .o inspection tools awkward.
The new model is that there is a global Registry object. You programmatically
register the Readers you want with the registry object. Whenever you need to
read/parse a file, you ask the registry to do it, and the registry tries each
registered reader.
For ease of use with the existing lld code base, there is one Registry
object inside the LinkingContext object.
2) Changing kind value to be a tuple
Beside Readers, the registry also keeps track of the mapping for Reference
Kind values to and from strings. Along with that, this patch also fixes
an ambiguity with the previous Reference::Kind values. The problem was that
we wanted to reuse existing relocation type values as Reference::Kind values.
But then how can the YAML write know how to convert a value to a string? The
fix is to change the 32-bit Reference::Kind into a tuple with an 8-bit namespace
(e.g. ELF, COFFF, etc), an 8-bit architecture (e.g. x86_64, PowerPC, etc), and
a 16-bit value. This tuple system allows conversion to and from strings with
no ambiguities.
llvm-svn: 197727
Executable files do not use a string table, so section names longer than 8
characters are not permitted. Long section names should just be truncated.
llvm-svn: 197470
If NONAME option is given for an export, that symbol will be exported only by
its ordinal. LLD will not emit the symbol name to the export table.
llvm-svn: 197371
OrdinalBase is an addend to the ordinals. We used to always set 1 to the field.
Although it produced a valid a DLL export table, it'd be a waste if the first
ordinal does not start with 1 -- we had to have NULL fields at the beginning of
the export address table. By setting the ordinal base, we can eliminate the
NULL fields.
llvm-svn: 197367
You can specify exported function's ordinal by /export:func,@<number> command
line option, but LLD ignored the option until now. This patch implements the
feature.
Ordinal is basically the index into the exported function address table. So,
for example, if /export:foo,@42 is specified, the linker writes foo's address
to 42th entry in the address table. Windows supports import-by-ordinal; you
can not only import a function by name, but by its ordinal. If you want to
allow your DLL users to import your functions by their ordinals, you need to
make sure that your functions are always exported with the same ordinals.
This is the feature for that situation.
llvm-svn: 197364
The only data in .edata whose length varies is the string. This patch moves
all the strings to the end of the section, so that 16-bit or 32-bit integers
are aligned on correct boundaries.
llvm-svn: 197213
This is the first patch to emit data for the DLL export table. The DLL export
table is the data used by the Windows loader to find the address of exported
function from DLL. With this patch, LLD is able to emit a valid DLL export
table which the Windows loader can interpret and load.
The data structure of the DLL export table is described in the Microsoft
PE/COFF Specification, section 5.3.
DLL support is not complete yet; the linker needs to emit an import library
for a DLL, otherwise the linker cannot link against the DLL. We also do not
support export-only-by-ordinal yet.
llvm-svn: 197212
DLLNameAtom is an atom whose content is a string. IdataAtom is not going to
be the only place we need such atom, so I want to generalize it.
llvm-svn: 197137
I'm planning to create a new pass for the DLL export table, and I want to use
the class both from IdataPass and the new pass, EdataPass. So move the class to
a common place.
llvm-svn: 197132
Before this patch, we had the following class hierarchy.
Chunk -> AtomChunk -> SectionChunk -> GenericSectionChunk
-> BaseRelocChunk
-> HeaderChunk
Chunk represented the generic concept of contiguous range in an output
file. AtomChunk represented a chunk consists of atoms.
That class hierarchy had many issues: 1) BaseRelocChunk does not really
consist of atoms, so inheriting from AtomChunk was plainly wrong, and 2)
the hierarchy is unecessarily too deep.
This patch correct them. The new hierachy is shown below.
Chunk -> SectionChunk -> AtomChunk
-> BaseRelocChunk
-> HeaderChunk
In the new hierarchy, AtomChunk represents a chunk consists of atoms. Other
types of sections (currently only BaseRelocChunk) should inherit directly
from SectionChunk.
llvm-svn: 197038