The existing (default) calling convention for memrefs in standard-to-LLVM
conversion was motivated by interfacing with LLVM IR produced from C sources.
In particular, it passes a pointer to the memref descriptor structure when
calling the function. Therefore, the descriptor is allocated on stack before
the call. This convention leads to several problems. PR44644 indicates a
problem with stack exhaustion when calling functions with memref-typed
arguments in a loop. Allocating outside of the loop may lead to concurrent
access problems in case the loop is parallel. When targeting GPUs, the contents
of the stack-allocated memory for the descriptor (passed by pointer) needs to
be explicitly copied to the device. Using an aggregate type makes it impossible
to attach pointer-specific argument attributes pertaining to alignment and
aliasing in the LLVM dialect.
Change the default calling convention for memrefs in standard-to-LLVM
conversion to transform a memref into a list of arguments, each of primitive
type, that are comprised in the memref descriptor. This avoids stack allocation
for ranked memrefs (and thus stack exhaustion and potential concurrent access
problems) and simplifies the device function invocation on GPUs.
Provide an option in the standard-to-LLVM conversion to generate auxiliary
wrapper function with the same interface as the previous calling convention,
compatible with LLVM IR porduced from C sources. These auxiliary functions
pack the individual values into a descriptor structure or unpack it. They also
handle descriptor stack allocation if necessary, serving as an allocation
scope: the memory reserved by `alloca` will be freed on exiting the auxiliary
function.
The effect of this change on MLIR-generated only LLVM IR is minimal. When
interfacing MLIR-generated LLVM IR with C-generated LLVM IR, the integration
only needs to require auxiliary functions and change the function name to call
the wrapper function instead of the original function.
This also opens the door to forwarding aliasing and alignment information from
memrefs to LLVM IR pointers in the standrd-to-LLVM conversion.
Summary:
This revision exposes the portable `llvm.fma` intrinsic in LLVMOps and uses it
in lieu of `llvm.fmuladd` when lowering the `vector.outerproduct` op to LLVM.
This guarantees proper `fma` instructions will be emitted if the target ISA
supports it.
`llvm.fmuladd` does not have this guarantee in its semantics, despite evidence
that the proper x86 instructions are emitted.
For more details, see https://llvm.org/docs/LangRef.html#llvm-fmuladd-intrinsic.
Reviewers: ftynse, aartbik, dcaballe, fhahn
Reviewed By: aartbik
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74219
Summary: The current syntax for AffineMapAttr and IntegerSetAttr conflict with function types, making it currently impossible to round-trip function types(and e.g. FuncOp) in the IR. This revision changes the syntax for the attributes by wrapping them in a keyword. AffineMapAttr is wrapped with `affine_map<>` and IntegerSetAttr is wrapped with `affine_set<>`.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D72429
Summary:
This diff adds lowering of the linalg.reshape op to LLVM.
A new descriptor is created with fields initialized as follows:
1. allocatedPTr, alignedPtr and offset are copied from the source descriptor
2. sizes are copied from the static destination shape
3. strides are copied from the static strides collected with `getStridesAndOffset`
Only the static case in which the target view conforms to strided memref
semantics is supported. Other cases are left for future work and will be added on
a per-need basis.
Reviewers: ftynse, mravishankar
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72316
This CL adds more common information to StructuredOpsUtils.h
The n_view attribute is retired in favor of args_in + args_out but the CL is otherwise NFC.
PiperOrigin-RevId: 285000621
This CL rewrites the linalg ops to loops transformations as patterns that can be targeted directly from Tablegen. Reliance on OpFolder is removed and to cope with it we introduce local folding patterns that are applied greedily.
PiperOrigin-RevId: 282765550
This CL uses the now standard std.subview in linalg.
Two shortcuts are currently taken to allow this port:
1. the type resulting from a view is currently degraded to fully dynamic to pass the SubViewOp verifier.
2. indexing into SubViewOp may access out of bounds since lowering to LLVM does not currently enforce it by construction.
These will be fixed in subsequent commits after discussions.
PiperOrigin-RevId: 280250129
This CL adds an extra pointer to the memref descriptor to allow specifying alignment.
In a previous implementation, we used 2 types: `linalg.buffer` and `view` where the buffer type was the unit of allocation/deallocation/alignment and `view` was the unit of indexing.
After multiple discussions it was decided to use a single type, which conflates both, so the memref descriptor now needs to carry both pointers.
This is consistent with the [RFC-Proposed Changes to MemRef and Tensor MLIR Types](https://groups.google.com/a/tensorflow.org/forum/#!searchin/mlir/std.view%7Csort:date/mlir/-wKHANzDNTg/4K6nUAp8AAAJ).
PiperOrigin-RevId: 279959463
Now that a view op has graduated to the std dialect, we can update Linalg to use it and remove ops that have become obsolete. As a byproduct, the linalg buffer and associated ops can also disappear.
PiperOrigin-RevId: 279073591
This allows mixing linalg operations with vector transfer operations (with additional modifications to affine ops) and is a step towards solving tensorflow/mlir#189.
PiperOrigin-RevId: 275543361
This fixes an omission that prevents Linalg to lower generic ops regions operating on ops in the VectorOps dialect.
To achieve this we simply need to `populateVectorToLLVMConversionPatterns` in the conversion.
Relevant tests are added.
PiperOrigin-RevId: 274577325
Certain lowering patterns were reported as [missing](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/dkdmHa77sSQ).
This CL adds them and allows Linalg/roundtrip.mlir and Linalg/loops.mlir to lower to LLVM directly. Those 2 tests are updated to additionally check that the direct lowering to LLVM does not crash.
The following points, left as TODOs still need to be addressed for correct end-to-end execution:
1. the lowering for ConvOp needs to pass attributes such as strides and dilations; the external library call needs to support it.
2. the lowering for GenericOp needs to support lowering to loops as a DialectConversion pattern. This is blocked on the DialectConversion infrastructure accepting an OperationFolder.
PiperOrigin-RevId: 272878131
This CL implements the last remaining bit of the [strided memref proposal](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
The syntax is a bit more explicit than what was originally proposed and resembles:
`memref<?x?xf32, offset: 0 strides: [?, 1]>`
Nonnegative strides and offsets are currently supported. Future extensions will include negative strides.
This also gives a concrete example of syntactic sugar for the ([RFC] Proposed Changes to MemRef and Tensor MLIR Types)[https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/-wKHANzDNTg].
The underlying implementation still uses AffineMap layout.
PiperOrigin-RevId: 272717437
This CL finishes the implementation of the Linalg + Affine type unification of the [strided memref RFC](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
As a consequence, the !linalg.view type, linalg::DimOp, linalg::LoadOp and linalg::StoreOp can now disappear and Linalg can use standard types everywhere.
PiperOrigin-RevId: 272187165
View descriptors are converted to *pointer to* LLVM struct to avoid ABI issues related to C struct packing. This creates unnecessary complexity and hampers unification with memrefs.
Instead, this CL makes view descriptors convert to LLVM struct (as it was originally) and promotes all structs to pointers right before calling an external function.
PiperOrigin-RevId: 267602693