Long ago (2010 according to svn blame), combineShuffle probably needed to prevent the accidental creation of illegal i64 types but there doesn't appear to be any combines that can cause this any more as they all have their own legality checks.
Differential Revision: https://reviews.llvm.org/D30213
llvm-svn: 296966
Summary:
When replacing a SDValue, we should remove the replaced value from
SoftenedFloats (and possibly the other maps as well?).
When we revisit a Node because it needs analyzing again, we have to
remove all result values from SoftenedFloats (and possibly other maps?).
This fixes the fp128 test failures with expensive checks for X86.
I think we probably should also remove the values from the other maps
(PromotedIntegers and so on), let me know what you think.
Reviewers: baldrick, bogner, davidxl, ab, arsenm, pirama, chh, RKSimon
Reviewed By: chh
Subscribers: danalbert, wdng, srhines, hfinkel, sepavloff, llvm-commits
Differential Revision: https://reviews.llvm.org/D29265
llvm-svn: 296964
This fixes cases where i1 types were not properly legalized yet and lead
to the creating of 0-sized stack slots.
This fixes http://llvm.org/PR32136
llvm-svn: 296950
Any unsuccessful llvm.type.checked.load devirtualizations will be translated
into uses of llvm.type.test, so we need to add the resulting llvm.type.test
intrinsics to the function summaries so that the LowerTypeTests pass will
export them.
Differential Revision: https://reviews.llvm.org/D29808
llvm-svn: 296939
These are simplified variants of the current G_SEQUENCE and G_EXTRACT, which
assume the individual parts will be contiguous, homogeneous, and occupy the
entirity of the larger register. This makes reasoning about them much easer
since you only have to look at the first register being merged and the result
to know what the instruction is doing.
I intend to gradually replace all uses of the more complicated sequence/extract
with these (or single-element insert/extracts), and then remove the older
variants. For now we start with legalization.
llvm-svn: 296921
Summary:
Reset the ValueData for each function to avoid using the ones in
the previous function.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits, xur
Differential Revision: https://reviews.llvm.org/D30479
llvm-svn: 296916
In the DWARF 4 Spec section 7.2.2, data in many DWARF sections, and some DWARF structures start with "Initial Length Values", which are a 32-bit length, and an optional 64-bit length if the 32 bit value == UINT32_MAX.
This patch abstracts the Initial Length type in YAML, and extends its use to all the DWARF structures that are supported in the DWARFYAML code that have Initial Length values.
llvm-svn: 296911
This set may affect code generation and is sensitive to link order (and
possibly in the future to the linker's choice of prevailing symbol), so we
need to include it.
Differential Revision: https://reviews.llvm.org/D30586
llvm-svn: 296907
This will enable removing hacks throughout the codebase
in clang and compiler-rt that feed multiple inputs to a
testing utility by globbing, all of which are either disabled
on Windows currently or using xargs / find hacks.
Differential Revision: https://reviews.llvm.org/D30380
llvm-svn: 296904
Summary:
If a loop contains a Phi node which has an invariant input from back
edge, it is profitable to peel such loops (rather than unroll them) to
use the advantage that this Phi is always invariant starting from 2nd
iteration. After the 1st iteration is peeled, other optimizations can
potentially simplify calculations with this invariant.
Patch by Max Kazantsev!
Reviewers: sanjoy, apilipenko, igor-laevsky, anna, mkuper, reames
Reviewed By: mkuper
Subscribers: mkuper, mzolotukhin, llvm-commits
Differential Revision: https://reviews.llvm.org/D30161
llvm-svn: 296898
Added code to check constant bus restrictions for VOP formats (only one SGPR value or literal-constant may be used by the instruction).
Note that the same checks are performed by SIInstrInfo::verifyInstruction (used by lowering code).
Added LIT tests.
llvm-svn: 296873
The intrinsics __builtin_arm_get_fpscr and __builtin_arm_set_fpscr read and
write to the fpscr (Floating-Point Status and Control Register) register.
A bug exists in the __builtin_arm_get_fpscr intrinsic definition in llvm which
treats this intrinsic as a IntroNoMem which means it's not a memory access and
doesn't have any other side-effects. Having this property on this intrinsic
means that various optimizations can be done on this such as common
sub-expression elimination with other reads. This can cause issues if there has
been write to this register, e.g.
void foo(int *p) {
p[0] = __builtin_arm_get_fpscr();
__builtin_arm_set_fpscr(1);
p[1] = __builtin_arm_get_fpscr();
}
in the above example the second read is currently CSE'd into the first read,
this is because llvm isn't aware that the write done by __builtin_arm_set_fpscr
effects the same register that __builtin_arm_get_fpscr reads from, to fix this
problem I've removed the property IntrNoMem so that __builtin_arm_get_fpscr is
treated as a memory access.
Differential Revision: https://reviews.llvm.org/D30542
llvm-svn: 296865
for VectorizeTree() API.This API uses it for proper mask computation to be used in shufflevector IR.
The fix is to compute the mask for out of order memory accesses while building the vectorizable tree
instead of actual vectorization of vectorizable tree.It also needs to recompute the proper Lane for
external use of vectorizable scalars based on shuffle mask.
Reviewers: mkuper
Differential Revision: https://reviews.llvm.org/D30159
Change-Id: Ide8773ce0ad3562f3cf4d1a0ad0f487e2f60ce5d
llvm-svn: 296863
This patch causes compile times for some patterns to explode. I have
a (large, unreduced) test case that slows down by more than 20x and
several test cases slow down by 2x. I'm sending some of the test cases
directly to Nirav and following up with more details in the review log,
but this should unblock anyone else hitting this.
llvm-svn: 296862
VZEROUPPER should not be issued on Knights Landing (KNL), but on Skylake-avx512 it should be.
Differential Revision: https://reviews.llvm.org/D29874
llvm-svn: 296859
A call should never modify the stack pointer, but some backends are
not so sure about this and never list SP in the regmask. For the
purposes of LiveDebugValues we assume a call never clobbers SP. We
already have a similar workaround in DbgValueHistoryCalculator (which
we hopefully can retire soon).
This fixes the availabilty of local ASANified variables on AArch64.
rdar://problem/27757381
llvm-svn: 296847
For chains of triangles with small join blocks that can be tail duplicated, a
simple calculation of probabilities is insufficient. Tail duplication
can be profitable in 3 different ways for these cases:
1) The post-dominators marked 50% are actually taken 56% (This shrinks with
longer chains)
2) The chains are statically correlated. Branch probabilities have a very
U-shaped distribution.
[http://nrs.harvard.edu/urn-3:HUL.InstRepos:24015805]
If the branches in a chain are likely to be from the same side of the
distribution as their predecessor, but are independent at runtime, this
transformation is profitable. (Because the cost of being wrong is a small
fixed cost, unlike the standard triangle layout where the cost of being
wrong scales with the # of triangles.)
3) The chains are dynamically correlated. If the probability that a previous
branch was taken positively influences whether the next branch will be
taken
We believe that 2 and 3 are common enough to justify the small margin in 1.
The code pre-scans a function's CFG to identify this pattern and marks the edges
so that the standard layout algorithm can use the computed results.
llvm-svn: 296845
Such edges may otherwise result in infinite recursion if a pointer to a vtable
is reachable from the vtable itself. This can happen in practice if a TU
defines the ABI types used to implement RTTI, and is itself compiled with RTTI.
Fixes PR32121.
llvm-svn: 296839
ValueTracking is used for more thorough analysis of operands. Based on the
analysis, either run-time checks can be simplified (e.g. check only one operand
instead of two) or the transformation can be avoided. For example, it is quite
often the case that a divisor is promoted from a shorter type and run-time
checks for it are redundant.
With additional compile-time analysis of values, two special cases naturally
arise and are addressed by the patch:
1) Both operands are known to be short enough. Then, the long division can be
simply replaced with a short one without CFG modification.
2) If a division is unsigned and the dividend is known to be short then the
long division is not needed at all. Because if the divisor is too big for
short division then the quotient is obviously zero (and the remainder is
equal to the dividend). Actually, the division is not needed when
(divisor > dividend).
Differential Revision: https://reviews.llvm.org/D29897
llvm-svn: 296832
Summary:
Currently, when 't1: i1 = setcc t2, t3, cc' followed by 't4: i1 = xor t1, Constant:i1<-1>' is folded into 't5: i1 = setcc t2, t3 !cc', SDLoc of newly created SDValue 't5' follows SDLoc of 't4', not 't1'. However, as the opcode of newly created SDValue is 'setcc', it make more sense to take DebugLoc from 't1' than 't4'. For the code below
```
extern int bar();
extern int baz();
int foo(int x, int y) {
if (x != y)
return bar();
else
return baz();
}
```
, following is the bitcode representation of 'foo' at the end of llvm-ir level optimization:
```
define i32 @foo(i32 %x, i32 %y) !dbg !4 {
entry:
tail call void @llvm.dbg.value(metadata i32 %x, i64 0, metadata !9, metadata !11), !dbg !12
tail call void @llvm.dbg.value(metadata i32 %y, i64 0, metadata !10, metadata !11), !dbg !13
%cmp = icmp ne i32 %x, %y, !dbg !14
br i1 %cmp, label %if.then, label %if.else, !dbg !16
if.then: ; preds = %entry
%call = tail call i32 (...) @bar() #3, !dbg !17
br label %return, !dbg !18
if.else: ; preds = %entry
%call1 = tail call i32 (...) @baz() #3, !dbg !19
br label %return, !dbg !20
return: ; preds = %if.else, %if.then
%retval.0 = phi i32 [ %call, %if.then ], [ %call1, %if.else ]
ret i32 %retval.0, !dbg !21
}
!14 = !DILocation(line: 5, column: 9, scope: !15)
!16 = !DILocation(line: 5, column: 7, scope: !4)
```
As you can see, in 'entry' block, 'icmp' instruction and 'br' instruction have different debug locations. However, with current implementation, there's no distinction between debug locations of these two when they are lowered to asm instructions. This is because 'icmp' and 'br' become 'setcc' 'xor' and 'brcond' in SelectionDAG, where SDLoc of 'setcc' follows the debug location of 'icmp' but SDLOC of 'xor' and 'brcond' follows the debug location of 'br' instruction, and SDLoc of 'xor' overwrites SDLoc of 'setcc' when they are folded. This patch addresses this issue.
Reviewers: atrick, bogner, andreadb, craig.topper, aprantl
Reviewed By: andreadb
Subscribers: jlebar, mkuper, jholewinski, andreadb, llvm-commits
Differential Revision: https://reviews.llvm.org/D29813
llvm-svn: 296825
This commit also relied on r296812, which I just reverted. We should probably
apply it again, after the r296812 has been discussed and been reapplied in some
variant.
llvm-svn: 296820
In ARMPreAllocLoadStoreOpt::RescheduleOps, LastOp should be the last
operation which we want to merge. If we break out of the loop because
an operation has the wrong offset, we shouldn't use that operation
as LastOp.
This patch fixes some cases where we would move stores to the wrong
insert point.
Re-commit with a fix to increment NumMove in the right place.
Differential Revision: https://reviews.llvm.org/D30124
llvm-svn: 296815
and also "clang-format GenericDomTreeConstruction.h, since the current
formatting makes it look like their is a bug in the loop indentation, and there
is not"
This reverts commit r296535.
There are still some open design questions which I would like to discuss. I
revert this for Daniel (who gave the OK), as he is on vacation.
llvm-svn: 296812
This patch fixes pr32063.
Current code in PPCTargetLowering::PerformDAGCombine can transform
bswap
store
into a single PPCISD::STBRX instruction. but it doesn't consider the case that the operand size of bswap may be larger than store size. When it occurs, we need 2 modifications,
1 For the last operand of PPCISD::STBRX, we should not use DAG.getValueType(N->getOperand(1).getValueType()), instead we should use cast<StoreSDNode>(N)->getMemoryVT().
2 Before PPCISD::STBRX, we need to shift the original operand of bswap to the right side.
Differential Revision: https://reviews.llvm.org/D30362
llvm-svn: 296811
This patch extends the current functionality of the AArch64 redundant copy
elimination pass to handle non-zero cases such as:
BB#0:
cmp x0, #1
b.eq .LBB0_1
.LBB0_1:
orr x0, xzr, #0x1 ; <-- redundant copy; x0 known to hold #1.
Differential Revision: https://reviews.llvm.org/D29344
llvm-svn: 296809
This patch adds support for struct return values to the MSP430
target backend. It also reverses the order of argument and return
registers in the calling convention to bring it into closer
alignment with the published EABI from TI.
Patch by Andrew Wygle (awygle).
Differential Revision: https://reviews.llvm.org/D29069
llvm-svn: 296807
Summary:
Extend -unroll-partial-threshold to 200 for runtime-loop3.ll test
as epilogue unroll initially add 1 more IV to the loop.
From: Evgeny Stupachenko <evstupac@gmail.com>
llvm-svn: 296803
MMX extraction often ends up as extract_i32(bitcast_v2i32(extract_i64(bitcast_v1i64(x86mmx v), 0)), 0) which fails to simplify on 32-bit targets as i64 isn't legal
llvm-svn: 296782
This patch reduces the stack frame size by not allocating the parameter area if
it is not required. In the current implementation LowerFormalArguments_64SVR4
already handles the parameter area, but LowerCall_64SVR4 does not
(when calculating the stack frame size). What this patch does is make
LowerCall_64SVR4 consistent with LowerFormalArguments_64SVR4.
Committing on behalf of Hiroshi Inoue.
Differential Revision: https://reviews.llvm.org/D29881
llvm-svn: 296771