It is possible that frame pointer is not found in the
callee saved info, thus FramePtrSpillFI may be incorrect
if we don't check the result of hasFP(MF).
Besides, if we enable the stack coloring algorithm, there
will be an assertion to ensure the slot is live. But in
the test case, %var1 is not live in the prologue of the
function, and we will get the assertion failure.
Note: There is similar code in ARMFrameLowering.cpp.
llvm-svn: 175616
The count attribute is more accurate with regards to the size of an array. It
also obviates the upper bound attribute in the subrange. We can also better
handle an unbound array by setting the count to -1 instead of the lower bound to
1 and upper bound to 0.
llvm-svn: 169312
The count field is necessary because there isn't a difference between the 'lo'
and 'hi' attributes for a one-element array and a zero-element array. When the
count is '0', we know that this is a zero-element array. When it's >=1, then
it's a normal constant sized array. When it's -1, then the array is unbounded.
llvm-svn: 169218
another mechanical change accomplished though the power of terrible Perl
scripts.
I have manually switched some "s to 's to make escaping simpler.
While I started this to fix tests that aren't run in all configurations,
the massive number of tests is due to a really frustrating fragility of
our testing infrastructure: things like 'grep -v', 'not grep', and
'expected failures' can mask broken tests all too easily.
Essentially, I'm deeply disturbed that I can change the testsuite so
radically without causing any change in results for most platforms. =/
llvm-svn: 159547
versions of Bash. In addition, I can back out the change to the lit
built-in shell test runner to support this.
This should fix the majority of fallout on Darwin, but I suspect there
will be a few straggling issues.
llvm-svn: 159544
This was done through the aid of a terrible Perl creation. I will not
paste any of the horrors here. Suffice to say, it require multiple
staged rounds of replacements, state carried between, and a few
nested-construct-parsing hacks that I'm not proud of. It happens, by
luck, to be able to deal with all the TCL-quoting patterns in evidence
in the LLVM test suite.
If anyone is maintaining large out-of-tree test trees, feel free to poke
me and I'll send you the steps I used to convert things, as well as
answer any painful questions etc. IRC works best for this type of thing
I find.
Once converted, switch the LLVM lit config to use ShTests the same as
Clang. In addition to being able to delete large amounts of Python code
from 'lit', this will also simplify the entire test suite and some of
lit's architecture.
Finally, the test suite runs 33% faster on Linux now. ;]
For my 16-hardware-thread (2x 4-core xeon e5520): 36s -> 24s
llvm-svn: 159525
* Removed test/lib/llvm.exp - it is no longer needed
* Deleted the dg.exp reading code from test/lit.cfg. There are no dg.exp files
left in the test suite so this code is no longer required. test/lit.cfg is
now much shorter and clearer
* Removed a lot of duplicate code in lit.local.cfg files that need access to
the root configuration, by adding a "root" attribute to the TestingConfig
object. This attribute is dynamically computed to provide the same
information as was previously provided by the custom getRoot functions.
* Documented the config.root attribute in docs/CommandGuide/lit.pod
llvm-svn: 153408
fixes: Use a separate register, instead of SP, as the
calling-convention resource, to avoid spurious conflicts with
actual uses of SP. Also, fix unscheduling of calling sequences,
which can be triggered by pseudo-two-address dependencies.
llvm-svn: 143206
it fixes the dragonegg self-host (it looks like gcc is miscompiled).
Original commit messages:
Eliminate LegalizeOps' LegalizedNodes map and have it just call RAUW
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
Delete #if 0 code accidentally left in.
llvm-svn: 143188
on every node as it legalizes them. This makes it easier to use
hasOneUse() heuristics, since unneeded nodes can be removed from the
DAG earlier.
Make LegalizeOps visit the DAG in an operands-last order. It previously
used operands-first, because LegalizeTypes has to go operands-first, and
LegalizeTypes used to be part of LegalizeOps, but they're now split.
The operands-last order is more natural for several legalization tasks.
For example, it allows lowering code for nodes with floating-point or
vector constants to see those constants directly instead of seeing the
lowered form (often constant-pool loads). This makes some things
somewhat more complicated today, though it ought to allow things to be
simpler in the future. It also fixes some bugs exposed by Legalizing
using RAUW aggressively.
Remove the part of LegalizeOps that attempted to patch up invalid chain
operands on libcalls generated by LegalizeTypes, since it doesn't work
with the new LegalizeOps traversal order. Instead, define what
LegalizeTypes is doing to be correct, and transfer the responsibility
of keeping calls from having overlapping calling sequences into the
scheduler.
Teach the scheduler to model callseq_begin/end pairs as having a
physical register definition/use to prevent calls from having
overlapping calling sequences. This is also somewhat complicated, though
there are ways it might be simplified in the future.
This addresses rdar://9816668, rdar://10043614, rdar://8434668, and others.
Please direct high-level questions about this patch to management.
llvm-svn: 143177
ARMII::AddrModeT1_s, we need to take into account that if the frame register is
ARM::SP, then the number of bits is 8. If it's not ARM::SP, then the number of
bits is 5.
llvm-svn: 141529
to be unreliable on platforms which require memcpy calls, and it is
complicating broader legalize cleanups. It is hoped that these cleanups
will make memcpy byval easier to implement in the future.
llvm-svn: 138977
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
llvm-svn: 133337
In Thumb mode we cannot handle GPR virtual registers, even though some
instructions can. When isel is lowering a CopyFromReg, it should limit
itself to subclasses of getRegClassFor(VT).
<rdar://problem/9624323>
llvm-svn: 133210
more callee-saved registers and introduce copies. Only allows it if scheduling
a node above calls would end up lessen register pressure.
Call operands also has added ABI restrictions for register allocation, so be
extra careful with hoisting them above calls.
rdar://9329627
llvm-svn: 130245
Optimize trivial branches in CodeGenPrepare, which often get created from the
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
llvm-svn: 127498
lowering of objectsize intrinsics. Unfortunately, a number of tests were relying
on llc not optimizing trivial branches, so I had to add an option to allow them
to continue to test what they originally tested.
This fixes <rdar://problem/8785296> and <rdar://problem/9112893>.
llvm-svn: 127459
TargetInstrInfo:
Change produceSameValue() to take MachineRegisterInfo as an optional argument.
When in SSA form, targets can use it to make more aggressive equality analysis.
Machine LICM:
1. Eliminate isLoadFromConstantMemory, use MI.isInvariantLoad instead.
2. Fix a bug which prevent CSE of instructions which are not re-materializable.
3. Use improved form of produceSameValue.
ARM:
1. Teach ARM produceSameValue to look pass some PIC labels.
2. Look for operands from different loads of different constant pool entries
which have same values.
3. Re-implement PIC GA materialization using movw + movt. Combine the pair with
a "add pc" or "ldr [pc]" to form pseudo instructions. This makes it possible
to re-materialize the instruction, allow machine LICM to hoist the set of
instructions out of the loop and make it possible to CSE them. It's a bit
hacky, but it significantly improve code quality.
4. Some minor bug fixes as well.
With the fixes, using movw + movt to materialize GAs significantly outperform the
load from constantpool method. 186.crafty and 255.vortex improved > 20%, 254.gap
and 176.gcc ~10%.
llvm-svn: 123905
state. Previously Thumb2 would restore sp from fp like this:
mov sp, r7
sub, sp, #4
If an interrupt is taken after the 'mov' but before the 'sub', callee-saved
registers might be clobbered by the interrupt handler. Instead, try
restoring directly from sp:
add sp, #4
Or, if necessary (with VLA, etc.) use a scratch register to compute sp and
then restore it:
sub.w r4, r7, #8
mov sp, r7
rdar://8465407
llvm-svn: 119977
It is only supported for ARM code. Normally Thumb2 code would use DMB instead,
but depending on how the compiler is invoked (e.g., -mattr=-db) that might be
disabled. This prevents a "cannot select MEMBARRIER_MCR" error in that
situation. Radar 8644195
llvm-svn: 118642
There were a number of issues to fix up here:
* The "device" argument of the llvm.memory.barrier intrinsic should be
used to distinguish the "Full System" domain from the "Inner Shareable"
domain. It has nothing to do with using DMB vs. DSB instructions.
* The compiler should never need to emit DSB instructions. Remove the
ARMISD::SYNCBARRIER node and also remove the instruction patterns for DSB.
* Merge the separate DMB/DSB instructions for options only used for the
disassembler with the default DMB/DSB instructions. Add the default
"full system" option ARM_MB::SY to the ARM_MB::MemBOpt enum.
* Add a separate ARMISD::MEMBARRIER_MCR node for subtargets that implement
a data memory barrier using the MCR instruction.
* Fix up encodings for these instructions (except MCR).
I also updated the tests and added a few new ones to check for DMB options
that were not currently being exercised.
llvm-svn: 117756
This reverts revision 114633. It was breaking llvm-gcc-i386-linux-selfhost.
It seems there is a downstream bug that is exposed by
-cgp-critical-edge-splitting=0. When that bug is fixed, this patch can go back
in.
Note that the changes to tailcallfp2.ll are not reverted. They were good are
required.
llvm-svn: 114859
"For ARM stack frames that utilize variable sized objects and have either
large local stack areas or require dynamic stack realignment, allocate a
base register via which to access the local frame. This allows efficient
access to frame indices not accessible via the FP (either due to being out
of range or due to dynamic realignment) or the SP (due to variable sized
object allocation). In particular, this greatly improves efficiency of access
to spill slots in Thumb functions which contain VLAs."
r112986 fixed a latent bug exposed by the above.
llvm-svn: 112989
large local stack areas or require dynamic stack realignment, allocate a
base register via which to access the local frame. This allows efficient
access to frame indices not accessible via the FP (either due to being out
of range or due to dynamic realignment) or the SP (due to variable sized
object allocation). In particular, this greatly improves efficiency of access
to spill slots in Thumb functions which contain VLAs.
rdar://7352504
rdar://8374540
rdar://8355680
llvm-svn: 112883
memory and synchronization barrier dmb and dsb instructions.
- Change instruction names to something more sensible (matching name of actual
instructions).
- Added tests for memory barrier codegen.
llvm-svn: 110785
Also added a test case to check for the added benefit of this patch: it's optimizing away the unnecessary restore of sp from fp for some non-leaf functions.
llvm-svn: 110707
reserved, not available for general allocation. This eliminates all the
extra checks for Darwin.
This change also fixes the use of FP to access frame indices in leaf
functions and cleaned up some confusing code in epilogue emission.
llvm-svn: 110655
occasions, caused code to be generated in a different order.
All cases I've seen involved float softening in the type
legalizer, and this could be perhaps be fixed there, but
it's better not to generate things differently in the first
place. 7797940 (6/29/2010..7/15/2010).
llvm-svn: 108484
PrologEpilog code, and use it to determine whether
the asm forces stack alignment or not. gcc consistently
does not do this for GCC-style asms; Apple gcc inconsistently
sometimes does it for asm blocks. There is no
convenient place to put a bit in either the SDNode or
the MachineInstr form, so I've added an extra operand
to each; unlovely, but it does allow for expansion for
more bits, should we need it. PR 5125. Some
existing testcases are affected.
The operand lists of the SDNode and MachineInstr forms
are indexed with awesome mnemonics, like "2"; I may
fix this someday, but not now. I'm not making it any
worse. If anyone is inspired I think you can find all
the right places from this patch.
llvm-svn: 107506
getFunctionAlignment and the corresponding use of that value in the ARM
asm printer, but now we're using the standard asm printer. The result of
this was that function alignments were dropped completely for Thumb functions.
Radar 8143571.
llvm-svn: 107435