The current implementation silently fails if the '@' identifier isn't present, making it similar to the 'optional' parse methods. This change renames the current implementation to 'Optional' and adds a new 'parseSymbolName' that emits an error.
PiperOrigin-RevId: 280214610
This change allows for adding additional nested references to a SymbolRefAttr to allow for further resolving a symbol if that symbol also defines a SymbolTable. If a referenced symbol also defines a symbol table, a nested reference can be used to refer to a symbol within that table. Nested references are printed after the main reference in the following form:
symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*
Example:
module @reference {
func @nested_reference()
}
my_reference_op @reference::@nested_reference
Given that SymbolRefAttr is now more general, the existing functionality centered around a single reference is moved to a derived class FlatSymbolRefAttr. Followup commits will add support to lookups, rauw, etc. for scoped references.
PiperOrigin-RevId: 279860501
Many operations with regions add an additional 'attributes' prefix when printing the attribute dictionary to differentiate it from the region body. This leads to duplicated logic for detecting when to actually print the attribute dictionary.
PiperOrigin-RevId: 278747681
This simplifies the implementation quite a bit, and removes the need for explicit string munging. One change is made to some of the enum elements of SPV_DimAttr to ensure that they are proper identifiers; The string form is now prefixed with 'Dim'.
PiperOrigin-RevId: 278027132
This simplifies the implementation, and removes the need to do explicit string manipulation. A utility method 'parseDimensionList' is added to the DialectAsmParser to simplify defining types and attributes that contain shapes.
PiperOrigin-RevId: 278020604
This greatly simplifies the implementation and removes custom parser functionality. The necessary methods are added to the DialectAsmParser.
PiperOrigin-RevId: 278015983
Now that a proper parser is passed to these methods, there isn't a need to explicitly pass a source location. The source location can be recovered from the parser as necessary. This removes the need to explicitly decode an SMLoc in the case where we don't need to, which can be expensive.
This requires adding some basic nesting support to the parser for supporting nested parsers to allow for remapping source locations of the nested parsers to the top level parser for accurate diagnostics. This is due to the fact that the attribute and type parsers use different source buffers than the top level parser, as they may be represented in string form.
PiperOrigin-RevId: 278014858
These classes are functionally similar to the OpAsmParser/Printer classes and provide hooks for parsing attributes/tokens/types/etc. This change merely sets up the base infrastructure and updates the parser hooks, followups will add hooks as needed to simplify existing handrolled dialect parsers.
This has various different benefits:
*) Attribute/Type parsing is much simpler to define.
*) Dialect attributes/types that contain other attributes/types can now use aliases.
*) It provides a 'spec' with which we may use in the future to auto-generate parsers/printers.
*) Error messages emitted by attribute/type parsers can provide character exact locations rather than "beginning of the string"
PiperOrigin-RevId: 278005322
For ops that recursively re-enter the parser to parse an operation (such as
ops with a "wraps" pretty form), this ensures that the wrapped op will parse
its location, which can then be used for the locations of the wrapping op
and any other implicit ops.
PiperOrigin-RevId: 277152636
This allows for parsing things like:
%name_1, %name_2:5, %name_3:2 = "my.op" ...
This is useful for operations that have groups of variadic result values. The
total number of results is expected to match the number of results defined by
the operation.
PiperOrigin-RevId: 276703280
The restriction that symbols can only have identifier names is arbitrary, and artificially limits the names that a symbol may have. This change adds support for parsing and printing symbols that don't fit in the 'bare-identifier' grammar by printing the reference in quotes, e.g. @"0_my_reference" can now be used as a symbol name.
PiperOrigin-RevId: 273644768
This CL implements the last remaining bit of the [strided memref proposal](https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/MaL8m2nXuio).
The syntax is a bit more explicit than what was originally proposed and resembles:
`memref<?x?xf32, offset: 0 strides: [?, 1]>`
Nonnegative strides and offsets are currently supported. Future extensions will include negative strides.
This also gives a concrete example of syntactic sugar for the ([RFC] Proposed Changes to MemRef and Tensor MLIR Types)[https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/-wKHANzDNTg].
The underlying implementation still uses AffineMap layout.
PiperOrigin-RevId: 272717437
The generated build methods have result type before the arguments (operands and attributes, which are also now adjacent in the explicit create method). This also results in changing the create method's ordering to match most build method's ordering.
PiperOrigin-RevId: 271755054
The existing logic to parse spirv::StructTypes is very brittle. This
change simplifies the parsing logic a lot. The simplification also
allows for memberdecorations to be separated by commas instead of
spaces (which was an artifact of the existing parsing logic). The
change also needs a modification to mlir::parseType to return the
number of chars parsed. Adding a new parseType method to do so.
Also allow specification of spirv::StructType with no members.
PiperOrigin-RevId: 270739672
This is useful in several cases, for example a user may want to sugar the syntax of a string(as we do with custom operation syntax), or avoid many nested ifs for parsing a set of known keywords.
PiperOrigin-RevId: 269695451
This method parses an operation in its generic form, from the current parser
state. This is the symmetric of OpAsmPrinter::printGenericOp(). An immediate
use case is illustrated in the test dialect, where an operation wraps another
one in its region and makes use of a single-line pretty-print form.
PiperOrigin-RevId: 267930869
Tweak to the pretty type parser to recognize that `->` is a special token that
shouldn't be split into two characters. This change allows dialect
types to wrap function types as in `!my.ptr_type<(i32) -> i32>`.
Closestensorflow/mlir#105
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/105 from schweitzpgi:parse-arrow 8b2d768053f419daae5a1a864121a44c4319acbe
PiperOrigin-RevId: 265986240
Split out method into specialized instances + add an early exit. Should be NFC, but simplifies reading the logic slightly IMHO.
PiperOrigin-RevId: 264855529
This will allow for naming values the same as existing SSA values for regions attached to operations that are isolated from above. This fits in with how the system already allows separate name scopes for sibling regions. This name shadowing can be enabled in the custom parser of operations by setting the 'enableNameShadowing' flag to true when calling 'parseRegion'.
%arg = constant 10 : i32
foo.op {
%arg = constant 10 : i32
}
PiperOrigin-RevId: 264255999
Introduce an operation that defines global constants and variables in the LLVM
dialect, to reflect the corresponding LLVM IR capability. This operation is
expected to live in the top-level module and behaves similarly to
llvm.constant. It currently does not model many of the attributes supported by
the LLVM IR for global values (memory space, alignment, thread-local, linkage)
and will be extended as the relevant use cases appear.
PiperOrigin-RevId: 262539445
This changes the type of the function type-building callback from
(ArrayRef<Type>, ArrayRef<Type>, bool, string &) to (ArrayRef<Type>,
ArrayRef<Type>, VariadicFlag, String &) to make the intended use clear from the
callback signature alone.
Also rearrange type definitions in Parser.cpp to make them more sorted
alphabetically.
PiperOrigin-RevId: 262405851
LLVM function type has first-class support for variadic functions. In the
current lowering pipeline, it is emulated using an attribute on functions of
standard function type. In LLVMFuncOp that has LLVM function type, this can be
modeled directly. Introduce parsing support for variadic arguments to the
function and use it to support variadic function declarations in LLVMFuncOp.
Function definitions are currently not supported as that would require modeling
va_start/va_end LLVM intrinsics in the dialect and we don't yet have a
consistent story for LLVM intrinsics.
PiperOrigin-RevId: 262372651
Now that modules are also operations, nothing prevents one from defining SSA
values in the module. Doing so in an implicit top-level module, i.e. outside
of a `module` operation, was leading to a crash because the implicit module was
not associated with an SSA name scope. Create a name scope before parsing the
top-level module to fix this.
PiperOrigin-RevId: 262366891
Extend the recently introduced support for hexadecimal float literals to tensor
literals, which may also contain special floating point values such as
infinities and NaNs.
Modify TensorLiteralParser to store the list of tokens representing values
until the type is parsed instead of trying to guess the tensor element type
from the token kinds (hexadecimal values can be either integers or floats, and
can be mixed with both). Maintain the error reports as close as possible to
the existing implementation to avoid disturbing the tests. They can be
improved in a separate clean-up if deemed necessary.
PiperOrigin-RevId: 260794716
MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
The initial version of this commit was missing support for float literals that
used to be printed in decimal notation as a fallback, but ended up being
printed in hexadecimal format which became the fallback for special values.
The decimal fallback behavior was not exercised by tests. It is currently
reinstated and tested by the newly added test @f32_potential_precision_loss in
parser.mlir.
PiperOrigin-RevId: 260790900
MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
PiperOrigin-RevId: 260018802
- introduce parseRegionArgumentList (similar to parseOperandList) to parse a
list of region arguments with a delimiter
- allows defining custom parse for op's with multiple/variadic number of
region arguments
- use this on the gpu.launch op (although the latter has a fixed number
of region arguments)
- add a test dialect op to test region argument list parsing (with the
no delimiter case)
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#40
PiperOrigin-RevId: 259442536
This cl standardizes the printing of the type of dialect attributes to work the same as other attribute kinds. The type of dialect attributes will trail the dialect specific portion:
`#` dialect-namespace `<` attr-data `>` `:` type
The attribute parsing hooks on Dialect have been updated to take an optionally null expected type for the attribute. This matches the respective parseAttribute hooks in the OpAsmParser.
PiperOrigin-RevId: 258661298
This allows for the attribute to hold symbolic references to other operations than FuncOp. This also allows for removing the dependence on FuncOp from the base Builder.
PiperOrigin-RevId: 257650017
This changes the top-level module parser to handle the case where the top-level module is defined with the module operation syntax, i.e:
module ... {
}
The printer is also updated to always print the top-level module in this form. This allows for cleanly round-tripping the location and attributes of the top-level module.
PiperOrigin-RevId: 257492069