Enabled clamp and omod for v_cvt_* opcodes which have src0 of an integer type
Reviewers: vpykhtin, arsenm
Differential Revision: https://reviews.llvm.org/D31327
llvm-svn: 298852
As we introduced target triple environment amdgiz and amdgizcl, the address
space values are no longer enums. We have to decide the value by target triple.
The basic idea is to use struct AMDGPUAS to represent address space values.
For address space values which are not depend on target triple, use static
const members, so that they don't occupy extra memory space and is equivalent
to a compile time constant.
Since the struct is lightweight and cheap, it can be created on the fly at
the point of usage. Or it can be added as member to a pass and created at
the beginning of the run* function.
Differential Revision: https://reviews.llvm.org/D31284
llvm-svn: 298846
Summary:
First iteration of SDWA peephole.
This pass tries to combine several instruction into one SDWA instruction. E.g. it converts:
'''
V_LSHRREV_B32_e32 %vreg0, 16, %vreg1
V_ADD_I32_e32 %vreg2, %vreg0, %vreg3
V_LSHLREV_B32_e32 %vreg4, 16, %vreg2
'''
Into:
'''
V_ADD_I32_sdwa %vreg4, %vreg1, %vreg3 dst_sel:WORD_1 dst_unused:UNUSED_PAD src0_sel:WORD_1 src1_sel:DWORD
'''
Pass structure:
1. Iterate over machine instruction in basic block and try to apply "SDWA patterns" to each of them. SDWA patterns match machine instruction into either source or destination SDWA operand. E.g. ''' V_LSHRREV_B32_e32 %vreg0, 16, %vreg1''' is matched to source SDWA operand '''%vreg1 src_sel:WORD_1'''.
2. Iterate over found SDWA operands and find instruction that could be potentially coverted into SDWA. E.g. for source SDWA operand potential instruction are all instruction in this basic block that uses '''%vreg0'''
3. Iterate over all potential instructions and check if they can be converted into SDWA.
4. Convert instructions to SDWA.
This review contains basic implementation of SDWA peephole pass. This pass requires additional testing fot both correctness and performance (no performance testing done).
There are several ways this pass can be improved:
1. Make this pass work on whole function not only basic block. As I can see this can be done right now without changes to pass.
2. Introduce more SDWA patterns
3. Introduce mnemonics to limit when SDWA patterns should apply
Reviewers: vpykhtin, alex-t, arsenm, rampitec
Subscribers: wdng, nhaehnle, mgorny
Differential Revision: https://reviews.llvm.org/D30038
llvm-svn: 298365
The manual is unclear on the details of this. It's not
clear to me if denormals are not allowed with clamp,
or if that is only omod. Not allowing denorms for
fp16 or fp64 isn't useful so I also question if that
is really a restriction. Same with whether this is valid
without IEEE mode enabled.
llvm-svn: 295905
Change implementation to use max instead of add.
min/max/med3 do not flush denormals regardless of the mode,
so it is OK to use it whether or not they are enabled.
Also allow using clamp with f16, and use knowledge
of dx10_clamp.
llvm-svn: 295788
The operand types were defined to fit the fp16_to_fp node, which
has the half as an integer type. v_cvt_f32_f16 does support
source modifiers, so change this to have an FP type and modifiers.
For targets without legal f16, this requires recognizing the
bit operations and trying to produce them.
llvm-svn: 293857
I think this is safe as long as no inputs are known to ever
be nans.
Also add an intrinsic for fmed3 to be able to handle all safe
math cases.
llvm-svn: 293598
This is worse if the original constant is an inline immediate.
This should also be done for 64-bit adds, but requires fixing
operand folding bugs first.
llvm-svn: 293540
Since 32-bit instructions with 32-bit input immediate behavior
are used to materialize 16-bit constants in 32-bit registers
for 16-bit instructions, determining the legality based
on the size is incorrect. Change operands to have the size
specified in the type.
Also adds a workaround for a disassembler bug that
produces an immediate MCOperand for an operand that
is supposed to be OPERAND_REGISTER.
The assembler appears to accept out of bounds immediates and
truncates them, but this seems to be an issue for 32-bit
already.
llvm-svn: 289306
Structure the definitions a bit more like the other classes.
The main change here is to split EXP with the done bit set
to a separate opcode, so we can set mayLoad = 1 so that it won't
be reordered before the other exp stores, since this has the special
constraint that if the done bit is set then this should be the last
exp in she shader.
Previously all exp instructions were inferred to have unmodeled
side effects.
llvm-svn: 288695
Summary: This is needed to be able to use this flags in InstrMappings.
Reviewers: tstellarAMD, vpykhtin
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, tony-tye
Differential Revision: https://reviews.llvm.org/D26666
llvm-svn: 286960
This is the conservatively correct way because it's easy to
move or replace a scalar immediate. This was incorrect in the case
when the register class wasn't known from the static instruction
definition, but still needed to be an SGPR. The main example of this
is inlineasm has an SGPR constraint.
Also start verifying the register classes of inlineasm operands.
llvm-svn: 285762
While trying to add the glc bit to SMEM instructions on VI
with the new refactoring I ran into some kind of shadowing
problem for the glc operand when using the pseudoinstruction
as a multiclass parameter.
Everywhere that currently uses it defines the operand to have the same
name as its type, i.e. glc:$glc which works. For some reason now it
conflicts, and its up evaluating to the wrong thing. For the
real encoding classes,
let Inst{16} = !if(ps.has_glc, glc, ?); was not being evaluated
and still visible in the Inst initializer in the expanded td file.
In other cases I got a a different error about an illegal operand
where this was using { 0 } initializer from the bits<1> glc initializer
instead of evaluating it as false in the if.
For consistency all of the operand types should probably
be captialized to avoid conflicting with the variable names
unless somebody has a better idea of how to fix this.
llvm-svn: 285462
We were trying to avoid using a FrameIndex operand in non-pointer
operands in a convoluted way, and would break because of
using TargetFrameIndex. The TargetFrameIndex should only be used
in the case where it makes sense to fold it as part of the addressing
mode, otherwise it requires materialization like a normal constant.
This wasn't working reliably and failed in the added testcase, hitting
the assert when processing the frame index.
The TargetFrameIndex was coming from trying to produce an AssertZext
limiting the maximum stack size. I'm not sure this was correct to begin
with, because it is apparently possible to have a single workitem
dispatch that requires all 4G of private memory.
llvm-svn: 281824