This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by definition or whose operands are loop invariant.
This list includes:
1. The intrinsics 'experimental.noalias.scope.decl' and 'sideeffect', which
are always uniform by definition.
2. If intrinsics 'lifetime.start', 'lifetime.end' and 'assume' have
loop invariant input operands then these are also uniform too.
Also, in VPRecipeBuilder::handleReplication we check if an instruction is
uniform based purely on whether or not the instruction lives in the Uniforms
list. However, there are certain cases where calls to some intrinsics can
be effectively treated as uniform too. Therefore, we now also treat the
following cases as uniform for scalable vectors:
1. If the 'assume' intrinsic's operand is not loop invariant, then we
are free to treat this as uniform anyway since it's only a performance
hint. We will get the benefit for the first lane.
2. When the input pointers for 'lifetime.start' and 'lifetime.end' are loop
variant then for scalable vectors we assume these still ultimately come
from the broadcast of an alloca. We do not support scalable vectorisation
of loops containing alloca instructions, hence the alloca itself would
be invariant. If the pointer does not come from an alloca then the
intrinsic itself has no effect.
I have updated the assume test for fixed width, since we now treat it
as uniform:
Transforms/LoopVectorize/assume.ll
I've also added new scalable vectorisation tests for other intriniscs:
Transforms/LoopVectorize/scalable-assume.ll
Transforms/LoopVectorize/scalable-lifetime.ll
Transforms/LoopVectorize/scalable-noalias-scope-decl.ll
Differential Revision: https://reviews.llvm.org/D107284
The may get changed before specialization by RunSCCPSolver. In other
words, the pass may change the function without specialization happens.
Add test and comment to reveal this.
And it may return No Changed if the function get changed by
RunSCCPSolver before the specialization. It looks like a potential bug.
Test Plan: check-all
Reviewed By: https://reviews.llvm.org/D107622
Differential Revision: https://reviews.llvm.org/D107622
Noticed that the computation for function specialization cost of a
function wouldn't change during the traversal of the arguments for the
function. We could hoist the computation out of the traversal. I
observed about ~1% improvement on compile time for spec2017. But I guess
it may not be precise. This should be NFC and fine.
Reviewed By: Sjoerd Meijer
Differential Revision: https://reviews.llvm.org/D107621
This is recommit of the patch 16ff91ebcc,
reverted in 0c28a7c990 because it had
an error in call of getFastMathFlags (base type should be FPMathOperator
but not Instruction). The original commit message is duplicated below:
Clang has builtin function '__builtin_isnan', which implements C
library function 'isnan'. This function now is implemented entirely in
clang codegen, which expands the function into set of IR operations.
There are three mechanisms by which the expansion can be made.
* The most common mechanism is using an unordered comparison made by
instruction 'fcmp uno'. This simple solution is target-independent
and works well in most cases. It however is not suitable if floating
point exceptions are tracked. Corresponding IEEE 754 operation and C
function must never raise FP exception, even if the argument is a
signaling NaN. Compare instructions usually does not have such
property, they raise 'invalid' exception in such case. So this
mechanism is unsuitable when exception behavior is strict. In
particular it could result in unexpected trapping if argument is SNaN.
* Another solution was implemented in https://reviews.llvm.org/D95948.
It is used in the cases when raising FP exceptions by 'isnan' is not
allowed. This solution implements 'isnan' using integer operations.
It solves the problem of exceptions, but offers one solution for all
targets, however some can do the check in more efficient way.
* Solution implemented by https://reviews.llvm.org/D96568 introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
specific code into IR. Now only SystemZ implements this hook and it
generates a call to target specific intrinsic function.
Although these mechanisms allow to implement 'isnan' with enough
efficiency, expanding 'isnan' in clang has drawbacks:
* The operation 'isnan' is hidden behind generic integer operations or
target-specific intrinsics. It complicates analysis and can prevent
some optimizations.
* IR can be created by tools other than clang, in this case treatment
of 'isnan' has to be duplicated in that tool.
Another issue with the current implementation of 'isnan' comes from the
use of options '-ffast-math' or '-fno-honor-nans'. If such option is
specified, 'fcmp uno' may be optimized to 'false'. It is valid
optimization in general, but it results in 'isnan' always returning
'false'. For example, in some libc++ implementations the following code
returns 'false':
std::isnan(std::numeric_limits<float>::quiet_NaN())
The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
operands are never NaNs. This assumption however should not be applied
to the functions that check FP number properties, including 'isnan'. If
such function returns expected result instead of actually making
checks, it becomes useless in many cases. The option '-ffast-math' is
often used for performance critical code, as it can speed up execution
by the expense of manual treatment of corner cases. If 'isnan' returns
assumed result, a user cannot use it in the manual treatment of NaNs
and has to invent replacements, like making the check using integer
operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
which also expresses the opinion, that limitations imposed by
'-ffast-math' should be applied only to 'math' functions but not to
'tests'.
To overcome these drawbacks, this change introduces a new IR intrinsic
function 'llvm.isnan', which realizes the check as specified by IEEE-754
and C standards in target-agnostic way. During IR transformations it
does not undergo undesirable optimizations. It reaches instruction
selection, where is lowered in target-dependent way. The lowering can
vary depending on options like '-ffast-math' or '-ffp-model' so the
resulting code satisfies requested semantics.
Differential Revision: https://reviews.llvm.org/D104854
All information to fix-up the reduction phi nodes in the vectorized loop
is available in VPlan now. This patch moves the code to do so, to make
this clearer. Fixing up the loop exit value still relies on other
information and remains outside of VPlan for now.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D100113
Now the recursive functions may get specialized many times when
`func-specialization-max-iters` increases. See discussion in
https://reviews.llvm.org/D106426 for details.
For a very large module, __llvm_gcov_reset can become very large.
__llvm_gcov_reset previously emitted stores to a bunch of globals in one
huge basic block. MemCpyOpt would turn many of these stores into
memsets, and updating MemorySSA would be extremely slow.
Verified that this makes the compile time of certain files go down
drastically (20min -> 5min).
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D107538
The SCEV-based salvaging method caches dbg.value information pre-LSR so
that salvaging may be attempted post-LSR. If the dbg.value are already
undef pre-LSR then a salvage attempt would be fruitless, so avoid
caching them.
Reviewed By: StephenTozer
Differential Revision: https://reviews.llvm.org/D107448
If the vectorized insertelements instructions form indentity subvector
(the subvector at the beginning of the long vector), it is just enough
to extend the vector itself, no need to generate inserting subvector
shuffle.
Differential Revision: https://reviews.llvm.org/D107494
Since all operands to ExtractValue must be loop-invariant when we deem
the loop vectorizable, we can consider ExtractValue to be uniform.
Reviewed By: david-arm
Differential Revision: https://reviews.llvm.org/D107286
In SimplifyCFG we may simplify the CFG by speculatively executing
certain stores, when they are preceded by a store to the same
location. This patch allows such speculation also when the stores are
similarly preceded by a load.
In order for this transformation to be correct we need to ensure that
the memory location is writable and the store in the new location does
not introduce a data race.
Local objects (created by an `alloca` instruction) are always
writable, so once we are past a read from a location it is valid to
also write to that same location.
Seeing just a load does not guarantee absence of a data race (unlike
if we see a store) - the load may still be part of a race, just not
causing undefined behaviour
(cf. https://llvm.org/docs/Atomics.html#optimization-outside-atomic).
In the original program, a data race might have been prevented by the
condition, but once we move the store outside the condition, we must
be sure a data race wasn't possible anyway, no matter what the
condition evaluates to.
One way to be sure that a local object is never concurrently
read/written is check that its address never escapes the function.
Hence this transformation is restricted to local, non-escaping
objects.
Reviewed By: nikic, lebedev.ri
Differential Revision: https://reviews.llvm.org/D107281
We can only trust the range of the index if it is guaranteed
non-poison.
Fixes PR50949.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D107364
This patch adds more instructions to the Uniforms list, for example certain
intrinsics that are uniform by definition or whose operands are loop invariant.
This list includes:
1. The intrinsics 'experimental.noalias.scope.decl' and 'sideeffect', which
are always uniform by definition.
2. If intrinsics 'lifetime.start', 'lifetime.end' and 'assume' have
loop invariant input operands then these are also uniform too.
Also, in VPRecipeBuilder::handleReplication we check if an instruction is
uniform based purely on whether or not the instruction lives in the Uniforms
list. However, there are certain cases where calls to some intrinsics can
be effectively treated as uniform too. Therefore, we now also treat the
following cases as uniform for scalable vectors:
1. If the 'assume' intrinsic's operand is not loop invariant, then we
are free to treat this as uniform anyway since it's only a performance
hint. We will get the benefit for the first lane.
2. When the input pointers for 'lifetime.start' and 'lifetime.end' are loop
variant then for scalable vectors we assume these still ultimately come
from the broadcast of an alloca. We do not support scalable vectorisation
of loops containing alloca instructions, hence the alloca itself would
be invariant. If the pointer does not come from an alloca then the
intrinsic itself has no effect.
I have updated the assume test for fixed width, since we now treat it
as uniform:
Transforms/LoopVectorize/assume.ll
I've also added new scalable vectorisation tests for other intriniscs:
Transforms/LoopVectorize/scalable-assume.ll
Transforms/LoopVectorize/scalable-lifetime.ll
Transforms/LoopVectorize/scalable-noalias-scope-decl.ll
Differential Revision: https://reviews.llvm.org/D107284
This change wasn't strictly necessary for D106164 and could be removed.
This patch addresses the post-commit comments from @fhahn on D106164, and
also changes sve-widen-gep.ll to use the same IR test as shown in
pointer-induction.ll.
Reviewed By: fhahn
Differential Revision: https://reviews.llvm.org/D106878
Letting it take SCEV allows further modification on the function to optimize
if the StoreSize / Stride is runtime determined.
This is a preceeding of D107353.
The big picture is to let LoopIdiom deal with runtime-determined sizes.
Reviewed By: Whitney, lebedev.ri
Differential Revision: https://reviews.llvm.org/D104595
Rather than blocking the whole MemCpyOpt pass if the libcalls are
not available, only disable creation of new memset/memcpy intrinsics
where only load/stores were used previously. This only affects the
store merging and load-store conversion optimization. Other
optimizations are derived from existing intrinsics, which are
well-defined in the absence of libcalls -- not having the libcalls
just means that call simplification won't convert them to intrinsics.
This is a weaker variation of D104801, which dropped these checks
entirely. Ideally we would not couple emission of intrinsics to
libcall availability at all, but as the intrinsics may be legalized
to libcalls we need to be a bit careful right now.
Differential Revision: https://reviews.llvm.org/D106769
This patch expands SPMDization (converting generic execution mode to SPMD for target regions) by guarding code regions that should be executed only by the main thread. Specifically, it generates guarded regions, which only the main thread executes, and the synchronization with worker threads using simple barriers. For correctness, the patch aborts SPMDization for target regions if the same code executes in a parallel region, thus must be not be guarded. This check is implemented using the ParallelLevels AA.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D106892
Rather than emitting the bias variable lazily as needed, emit it
eagerly. This allows profile runtime to refer to this variable
unconditionally without having to use the weak reference. The bias
variable is in a COMDAT so there'll never be more than one instance,
and if it's not needed, linker should be able to GC it, so the overhead
should be minimal.
Differential Revision: https://reviews.llvm.org/D107377
SCEV-based salvaging in LSR translates SCEVs to DIExpressions. SCEVs may
contain very large integers but the translation does not support
integers greater than 64 bits. This patch adds checks to ensure
conversions of these large integers is not attempted. A regression test
is added to ensure no such translation is attempted.
Reviewed by: StephenTozer
PR: https://bugs.llvm.org/show_bug.cgi?id=51329
Differential Revision: https://reviews.llvm.org/D107438
Clang has builtin function '__builtin_isnan', which implements C
library function 'isnan'. This function now is implemented entirely in
clang codegen, which expands the function into set of IR operations.
There are three mechanisms by which the expansion can be made.
* The most common mechanism is using an unordered comparison made by
instruction 'fcmp uno'. This simple solution is target-independent
and works well in most cases. It however is not suitable if floating
point exceptions are tracked. Corresponding IEEE 754 operation and C
function must never raise FP exception, even if the argument is a
signaling NaN. Compare instructions usually does not have such
property, they raise 'invalid' exception in such case. So this
mechanism is unsuitable when exception behavior is strict. In
particular it could result in unexpected trapping if argument is SNaN.
* Another solution was implemented in https://reviews.llvm.org/D95948.
It is used in the cases when raising FP exceptions by 'isnan' is not
allowed. This solution implements 'isnan' using integer operations.
It solves the problem of exceptions, but offers one solution for all
targets, however some can do the check in more efficient way.
* Solution implemented by https://reviews.llvm.org/D96568 introduced a
hook 'clang::TargetCodeGenInfo::testFPKind', which injects target
specific code into IR. Now only SystemZ implements this hook and it
generates a call to target specific intrinsic function.
Although these mechanisms allow to implement 'isnan' with enough
efficiency, expanding 'isnan' in clang has drawbacks:
* The operation 'isnan' is hidden behind generic integer operations or
target-specific intrinsics. It complicates analysis and can prevent
some optimizations.
* IR can be created by tools other than clang, in this case treatment
of 'isnan' has to be duplicated in that tool.
Another issue with the current implementation of 'isnan' comes from the
use of options '-ffast-math' or '-fno-honor-nans'. If such option is
specified, 'fcmp uno' may be optimized to 'false'. It is valid
optimization in general, but it results in 'isnan' always returning
'false'. For example, in some libc++ implementations the following code
returns 'false':
std::isnan(std::numeric_limits<float>::quiet_NaN())
The options '-ffast-math' and '-fno-honor-nans' imply that FP operation
operands are never NaNs. This assumption however should not be applied
to the functions that check FP number properties, including 'isnan'. If
such function returns expected result instead of actually making
checks, it becomes useless in many cases. The option '-ffast-math' is
often used for performance critical code, as it can speed up execution
by the expense of manual treatment of corner cases. If 'isnan' returns
assumed result, a user cannot use it in the manual treatment of NaNs
and has to invent replacements, like making the check using integer
operations. There is a discussion in https://reviews.llvm.org/D18513#387418,
which also expresses the opinion, that limitations imposed by
'-ffast-math' should be applied only to 'math' functions but not to
'tests'.
To overcome these drawbacks, this change introduces a new IR intrinsic
function 'llvm.isnan', which realizes the check as specified by IEEE-754
and C standards in target-agnostic way. During IR transformations it
does not undergo undesirable optimizations. It reaches instruction
selection, where is lowered in target-dependent way. The lowering can
vary depending on options like '-ffast-math' or '-ffp-model' so the
resulting code satisfies requested semantics.
Differential Revision: https://reviews.llvm.org/D104854
This adds support for specialising recursive functions. For example:
int Global = 1;
void recursiveFunc(int *arg) {
if (*arg < 4) {
print(*arg);
recursiveFunc(*arg + 1);
}
}
void main() {
recursiveFunc(&Global);
}
After 3 iterations of function specialisation, followed by inlining of the
specialised versions of recursiveFunc, the main function looks like this:
void main() {
print(1);
print(2);
print(3);
}
To support this, the following has been added:
- Update the solver and state of the new specialised functions,
- An optimisation to propagate constant stack values after each iteration of
function specialisation, which is necessary for the next iteration to
recognise the constant values and trigger.
Specialising recursive functions is (at the moment) controlled by option
-func-specialization-max-iters and is opt-in for compile-time reasons. I.e.,
the default is -func-specialization-max-iters=1, but for the example above we
would need to use -func-specialization-max-iters=3. Future work is to see if we
can increase the default, or improve the cost-model/heuristics to control
compile-times.
Differential Revision: https://reviews.llvm.org/D106426
Currently, in OptimizeGlobalAddressOfMalloc, the transformation for global loads assumes that they have the same Type. With the support of ConstantExpr (https://reviews.llvm.org/D106589), this may not be true any more (as seen in the test case), and we miss the code to handle this, This is to fix that.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D107397
This transform has been restricted to legal types since
https://reviews.llvm.org/rG65df808f6254617b9eee931d00e95d900610b660
in 2012.
This is particularly restrictive on RISCV64 which only has i64
as a legal integer type. i32 is a very common type in code
generated from C, but we won't form a lookup table with it.
This also effects other common types like i8/i16 types on ARM,
AArch64, RISCV, etc.
This patch proposes to allow power of 2 types larger than 8 bit, if
they will fit in the largest legal integer type in DataLayout.
These types are common in C code so generally well handled in
the backends.
We could probably do this for other types like i24 and rely on
alignment and padding to allow the backend to use a single wider
load. This isn't my main concern right now and it will need more
tests.
We could also allow larger types up to some limit and let the
backend split into multiple loads, but we need to define that
limit. It's also not my main concern right now.
Reviewed By: lebedev.ri
Differential Revision: https://reviews.llvm.org/D107233
If the vectorized insertelements instructions form indentity subvector
(the subvector at the beginning of the long vector), it is just enough
to extend the vector itself, no need to generate inserting subvector
shuffle.
Differential Revision: https://reviews.llvm.org/D107344
Fixed type assertion failure caused by trying to fold a masked load with a
select where the select condition is a scalar value
Reviewed By: sdesmalen, lebedev.ri
Differential Revision: https://reviews.llvm.org/D107372
The inttoptr/ptrtoint roundtrip optimization is not always correct.
We are working towards removing this optimization and adding support to specific cases where this optimization works.
In this patch, we focus on phi-node operands with inttoptr casts.
We know that ptrtoint( inttoptr( ptrtoint x) ) is same as ptrtoint (x).
So, we want to remove this roundtrip cast which goes through phi-node.
Reviewed By: aqjune
Differential Revision: https://reviews.llvm.org/D106289
I'm renaming the flag because a future patch will add a new
enableOrderedReductions() TTI interface and so the meaning of this
flag will change to be one of forcing the target to enable/disable
them. Also, since other places in LoopVectorize.cpp use the word
'Ordered' instead of 'strict' I changed the flag to match.
Differential Revision: https://reviews.llvm.org/D107264
I'm not sure this is the best way to approach this,
but the situation is rather not very detectable unless we explicitly call it out when refusing to advise to unroll.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D107271
This aligns the multiple exit costing with all the other cost decisions. Note that UnrollAndJam, which is the only other caller of the original home of this code, unconditionally bails out of multiple exit loops.
The option to not preserve LCSSA is in fact not tested at all in upstream. I was tempted to just remove the code entirely, but realized I didn't need to for my actual goal.
This patch updates VPInterleaveRecipe::print to print the actual defined
VPValues for load groups and the store VPValue operands for store
groups.
The IR references may become outdated while transforming the VPlan and
the defined and stored VPValues always are up-to-date.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D107223
When the limit of the inner loop is a known integer, the InstCombine
pass now causes the transformation e.g. imcp ult i32 %inc, tripcount ->
icmp ult %j, tripcount-step (where %j is the inner loop induction
variable and %inc is add %j, step), which is now accounted for when
identifying the trip count of the loop. This is also an acceptable use
of %j (provided the step is 1) so is ignored as long as the compare
that it's used in is also the condition of the inner branch.
Differential Revision: https://reviews.llvm.org/D105802
I'm working on extending the OptimizeGlobalAddressOfMalloc to handle some more general cases. This is to add support of the ConstantExpr use of the global variables. The function allUsesOfLoadedValueWillTrapIfNull is now iterative with the added CE use of GV. Also, the recursive function valueIsOnlyUsedLocallyOrStoredToOneGlobal is changed to iterative using a worklist with the GEP case added.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D106589
I don't know much about this pass, but we need a stronger
check on the memset length arg to avoid an assert. The
current code was added with D59000.
The test is reduced from:
https://llvm.org/PR50910
Differential Revision: https://reviews.llvm.org/D106462
Additional asserts were added to ScalarEvolution to enforce
pointer/int type rules. An assert is triggered when the LSR pass
attempts to extend a pointer SCEV in GenerateTruncates.
This patch changes GenerateTruncates to exit early if the Formaula
contains a ScaledReg or BaseReg with a pointer type.
Differential Revision: https://reviews.llvm.org/D107185
Change `CountersPtr` in `__profd_` to a label difference, which is a link-time
constant. On ELF, when linking a shared object, this requires that `__profc_` is
either private or linkonce/linkonce_odr hidden. On COFF, we need D104564 so that
`.quad a-b` (64-bit label difference) can lower to a 32-bit PC-relative relocation.
```
# ELF: R_X86_64_PC64 (PC-relative)
.quad .L__profc_foo-.L__profd_foo
# Mach-O: a pair of 8-byte X86_64_RELOC_UNSIGNED and X86_64_RELOC_SUBTRACTOR
.quad l___profc_foo-l___profd_foo
# COFF: we actually use IMAGE_REL_AMD64_REL32/IMAGE_REL_ARM64_REL32 so
# the high 32-bit value is zero even if .L__profc_foo < .L__profd_foo
# As compensation, we truncate CountersDelta in the header so that
# __llvm_profile_merge_from_buffer and llvm-profdata reader keep working.
.quad .L__profc_foo-.L__profd_foo
```
(Note: link.exe sorts `.lprfc` before `.lprfd` even if the object writer
has `.lprfd` before `.lprfc`, so we cannot work around by reordering
`.lprfc` and `.lprfd`.)
With this change, a stage 2 (`-DLLVM_TARGETS_TO_BUILD=X86 -DLLVM_BUILD_INSTRUMENTED=IR`)
`ld -pie` linked clang is 1.74% smaller due to fewer R_X86_64_RELATIVE relocations.
```
% readelf -r pie | awk '$3~/R.*/{s[$3]++} END {for (k in s) print k, s[k]}'
R_X86_64_JUMP_SLO 331
R_X86_64_TPOFF64 2
R_X86_64_RELATIVE 476059 # was: 607712
R_X86_64_64 2616
R_X86_64_GLOB_DAT 31
```
The absolute function address (used by llvm-profdata to collect indirect call
targets) can be converted to relative as well, but is not done in this patch.
Differential Revision: https://reviews.llvm.org/D104556
Replace insertelement instructions for splats with just single
insertelement + broadcast shuffle. Also, try to merge these instructions
if they come from the same/shuffled gather node.
Differential Revision: https://reviews.llvm.org/D107104
For the nodes with reused scalars the user may be not only of the size
of the final shuffle but also of the size of the scalars themselves,
need to check for this. It is safe to just modify the check here, since
the order of the scalars themselves is preserved, only indeces of the
reused scalars are changed. So, the users with the same size as the
number of scalars in the node, will not be affected, they still will get
the operands in the required order.
Reported by @mstorsjo in D105020.
Differential Revision: https://reviews.llvm.org/D107080
If the instruction was previously deleted, it should not be treated as
an external user. This fixes cost estimation and removes dead
extractelement instructions.
Differential Revision: https://reviews.llvm.org/D107106
Need to check that the minimum acceptable vector factor is at least 2,
not 0, to avoid compiler crash during gathered loads analysis.
Differential Revision: https://reviews.llvm.org/D107058
This work provides four flags to disable four different sets of OpenMP optimizations. These flags take effect in llvm/lib/Transforms/IPO/OpenMPOpt.cpp and include the following:
- openmp-opt-disable-deglobalization: Defaults to false, adding this flag sets the variable DisableOpenMPOptDeglobalization to true. This prevents AA registration for HeapToStack and HeapToShared.
- openmp-opt-disable-spmdization: Defaults to false, adding this flag sets the variable DisableOpenMPOptSPMDization to true. This indicates a pessimistic fixpoint in changeToSPMDMode.
- openmp-opt-disable-folding: Defaults to false, adding this flag sets the variable DisableOpenMPOptFolding to true. This indicates a pessimistic fixpoint in the attributor init for AAFoldRuntimeCall.
- openmp-opt-disable-state-machine-rewrite: Defaults to false, adding this flag sets the variable DisableOpenMPOptStateMachineRewrite to true. This first prevents changes to the state machine in rewriteDeviceCodeStateMachine by returning before changes are made, and if a custom state machine is built in buildCustomStateMachine, stops by returning a pessimistic fixpoint.
Reviewed By: jhuber6
Differential Revision: https://reviews.llvm.org/D106802
Patch by Mohammad Fawaz
This issues started happening after
b373b5990d
Basically, if the memcpy is volatile, the collectUsers() function should
return false, just like we do for volatile loads.
Differential Revision: https://reviews.llvm.org/D106950
SCEVToIterCountExpr only expects to be fed affine expressions, but
DbgRewriteSalvageableDVIs is feeding it non-affine induction variables.
Following this up with an obvious fix, will add test coverage too if
this avoids D105207 being reverted.
When the trip count of the inner loop is a constant, the InstCombine
pass now causes the transformation e.g. imcp ult i32 %inc, tripcount ->
icmp ult %j, tripcount-step (where %j is the inner loop induction
variable and %inc is add %j, step), which is now accounted for when
identifying the trip count of the loop. This is also an acceptable use
of %j (provided the step is 1) so is ignored as long as the compare
that it's used in is also the condition of the inner branch.
Differential Revision: https://reviews.llvm.org/D105802
The current implementation of function internalization creats a copy of each
function and replaces every use. This has the downside that the external
versions of the functions will call into the internalized versions of the
functions. This prevents them from being fully independent of eachother. This
patch replaces the current internalization scheme with a method that creates
all the copies of the functions intended to be internalized first and then
replaces the uses as long as their caller is not already internalized.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D106931
Reapply commit d675b594f4 that was
reverted due to buildbot failures. A simple fix has been applied to
remove an assertion.
Differential Revision: https://reviews.llvm.org/D105207
The SCEV method getBackedgeTakenCount() returns a SCEVCouldNotCompute
object if the backedge-taken count is unpredictable. This fix ensures
there is no longer an attempt to use such an object to find the trip
count.
Patch by: Rosie Sumpter.
Differential Revision: https://reviews.llvm.org/D106970
This is a second attempt to fix the EXPENSIVE_CHECKS issue that was mentioned In D91661#2875179 by @jroelofs.
(The first attempt was in D105983)
D91661 more or less completely reverted D49126 and by doing so also removed the cleanup logic of the created declarations and calls.
This patch is a replacement for D91661 (which must itself be reverted first). It replaces the custom declaration creation with the
generic version and shows the test impact. It also tracks the number of NamedValues to detect if a new prototype was added instead
of looking at the available users of a prototype.
Reviewed By: jroelofs
Differential Revision: https://reviews.llvm.org/D106147
This reverts commit 77080a1eb6.
This change introduced issues detected with EXPENSIVE_CHECKS. Reverting to restore the
needed function cleanup. A next patch will then just improve on the name mangling.
[[noreturn]] can be used since Oct 2016 when the minimum compiler requirement was bumped to GCC 4.8/MSVC 2015.
Note: the definition of LLVM_ATTRIBUTE_NORETURN is kept for now.
Reapply commit 796b84d26f that was
reverted due to reports of crashes. A minor change now guards against
getVariableLocationOperand() returning a nullptr.
Differential Revision: https://reviews.llvm.org/D106659
This transform was added with e38b7e8948
and as shown in:
https://llvm.org/PR51241
...it could crash without an extra check of the blocks.
There might be a more compact way to write this constraint,
but we can't just count the successors/predecessors without
affecting a test that includes a switch instruction.
Reworked reordering algorithm. Originally, the compiler just tried to
detect the most common order in the reordarable nodes (loads, stores,
extractelements,extractvalues) and then fully rebuilding the graph in
the best order. This was not effecient, since it required an extra
memory and time for building/rebuilding tree, double the use of the
scheduling budget, which could lead to missing vectorization due to
exausted scheduling resources.
Patch provide 2-way approach for graph reodering problem. At first, all
reordering is done in-place, it doe not required tree
deleting/rebuilding, it just rotates the scalars/orders/reuses masks in
the graph node.
The first step (top-to bottom) rotates the whole graph, similarly to the previous
implementation. Compiler counts the number of the most used orders of
the graph nodes with the same vectorization factor and then rotates the
subgraph with the given vectorization factor to the most used order, if
it is not empty. Then repeats the same procedure for the subgraphs with
the smaller vectorization factor. We can do this because we still need
to reshuffle smaller subgraph when buildiong operands for the graph
nodes with lasrger vectorization factor, we can rotate just subgraph,
not the whole graph.
The second step (bottom-to-top) scans through the leaves and tries to
detect the users of the leaves which can be reordered. If the leaves can
be reorder in the best fashion, they are reordered and their user too.
It allows to remove double shuffles to the same ordering of the operands in
many cases and just reorder the user operations instead. Plus, it moves
the final shuffles closer to the top of the graph and in many cases
allows to remove extra shuffle because the same procedure is repeated
again and we can again merge some reordering masks and reorder user nodes
instead of the operands.
Also, patch improves cost model for gathering of loads, which improves
x264 benchmark in some cases.
Gives about +2% on AVX512 + LTO (more expected for AVX/AVX2) for {625,525}x264,
+3% for 508.namd, improves most of other benchmarks.
The compile and link time are almost the same, though in some cases it
should be better (we're not doing an extra instruction scheduling
anymore) + we may vectorize more code for the large basic blocks again
because of saving scheduling budget.
Differential Revision: https://reviews.llvm.org/D105020
As suggested in D105008, move the code that fixes up the backedge value
for first order recurrences to VPlan::execute.
Now all that remains in fixFirstOrderRecurrences is the code responsible
for creating the exit values in the middle block.
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D106244
This makes a couple of changes to the costing of MLA reduction patterns,
to more accurately cost various patterns that can come up from
vectorization.
- The Arm implementation of getExtendedAddReductionCost is altered to
only provide costs for legal or smaller types. Larger than legal types
need to be split, which currently does not work very well, especially
for predicated reductions where the predicate may be legal but needs to
be split. Currently we limit it to legal or smaller input types.
- The getReductionPatternCost has learnt that reduce(ext(mul(ext, ext))
is a pattern that can come up, and can be treated the same as
reduce(mul(ext, ext)) providing the extension types match.
- And it has been adjusted to not count the ext in reduce(mul(ext, ext))
as part of a reduce(mul) pattern.
Together these changes help to more accurately cost the mla reductions
in cases such as where the extend types don't match or the extend
opcodes are different, picking better vector factors that don't result
in expanded reductions.
Differential Revision: https://reviews.llvm.org/D106166
The device runtime contains several calls to `__kmpc_get_hardware_num_threads_in_block`
and `__kmpc_get_hardware_num_blocks`. If the thread_limit and the num_teams are constant,
these calls can be folded to the constant value.
In this patch we use the already introduced `AAFoldRuntimeCall` and the `NumTeams` and
`NumThreads` kernel attributes (to be introduced in a different patch) to fold these functions.
The code checks all the kernels, and if their attributes match, the functions are folded.
In the future we will explore specializing for multiple values of NumThreads and NumTeams.
Depends on D106390
Reviewed By: jdoerfert, JonChesterfield
Differential Revision: https://reviews.llvm.org/D106033
This reapplies commit cbb709e251 and
includes the use of the lookup method instead of operator[] to avoid
accidentally setting (empty) simplification callbacks.
This reverts commit aa27430a62.