This patch is a revert of e08f205f5c. In that patch, DW_TAG_subprograms
were permitted to be referenced across CU boundaries, to improve stack
trace construction using call site information. Unfortunately, as
documented in PR48790, the way that subprograms are "owned" by dwarf units
is sufficiently complicated that subprograms end up in unexpected units,
invalidating cross-unit references.
There's no obvious way to easily fix this, and several attempts have
failed. Revert this to ensure correct DWARF is always emitted.
Three tests change in addition to the reversion, but they're all very
light alterations.
Differential Revision: https://reviews.llvm.org/D107076
This patch prevents GlobalISel from optimizing out redundant branch
instructions when compiling without optimizations.
The motivating example is code like the following common pattern in
Swift, where users expect to be able to set a breakpoint on the early
exit:
public func f(b: Bool) {
guard b else {
return // I would like to set a breakpoint here.
}
...
}
The patch modifies two places in GlobalISEL: The first one is in
IRTranslator.cpp where the removal of redundant branches is made
conditional on the optimization level. The second one is in
AArch64InstructionSelector.cpp where an -O0 *only* optimization is
being removed.
Disabling these optimizations increases code size at -O0 by
~8%. However, doing so improves debuggability, and debug builds are
the primary reason why developers compile without optimizations. We
thus concluded that this is the right trade-off.
rdar://79515454
This tenatively reapplies the patch without modifications, the LLDB
test that has blocked this from landing previously has since been
modified to hopefully no longer be sensitive to this change.
Differential Revision: https://reviews.llvm.org/D105238
Late in SelectionDAG we join up instruction numbers with their defining
instructions, if it couldn't be done during the main part of SelectionDAG.
One exception is function arguments, where we have to point a DBG_PHI
instruction at the incoming live register, as they don't have a defining
instruction. This patch adds another exception, for constant physregs, like
aarch64 has.
It may seem wasteful to use two instructions where we could use a single
DBG_VALUE, however the whole point of instruction referencing is to
decouple the identification of values from the specification of where
variable location ranges start.
(Part of my aarch64 work to ease adoption of instruction referencing, as
in the meta comment on D104520)
Differential Revision: https://reviews.llvm.org/D104520
This patch prevents GlobalISel from optimizing out redundant branch
instructions when compiling without optimizations.
The motivating example is code like the following common pattern in
Swift, where users expect to be able to set a breakpoint on the early
exit:
public func f(b: Bool) {
guard b else {
return // I would like to set a breakpoint here.
}
...
}
The patch modifies two places in GlobalISEL: The first one is in
IRTranslator.cpp where the removal of redundant branches is made
conditional on the optimization level. The second one is in
AArch64InstructionSelector.cpp where an -O0 *only* optimization is
being removed.
Disabling these optimizations increases code size at -O0 by
~8%. However, doing so improves debuggability, and debug builds are
the primary reason why developers compile without optimizations. We
thus concluded that this is the right trade-off.
rdar://79515454
Differential Revision: https://reviews.llvm.org/D105238
This will currently accept the old number of bytes syntax, and convert
it to a scalar. This should be removed in the near future (I think I
converted all of the tests already, but likely missed a few).
Not sure what the exact syntax and policy should be. We can continue
printing the number of bytes for non-generic instructions to avoid
test churn and only allow non-scalar types for generic instructions.
This will currently print the LLT in parentheses, but accept parsing
the existing integers and implicitly converting to scalar. The
parentheses are a bit ugly, but the parser logic seems unable to deal
without either parentheses or some keyword to indicate the start of a
type.
This adds support for functions outlined by the IR Outliner to be
recognized by the debugger. The expected behavior is that it will
skip over the instructions included in that section. This is due to the
fact that we can not say which of the original locations the
instructions originated from.
These functions will show up in the call stack, but you cannot step
through them.
Reviewers: paquette, vsk, djtodoro
Differential Revision: https://reviews.llvm.org/D87302
This rewrites big parts of the fast register allocator. The basic
strategy of doing block-local allocation hasn't changed but I tweaked
several details:
Track register state on register units instead of physical
registers. This simplifies and speeds up handling of register aliases.
Process basic blocks in reverse order: Definitions are known to end
register livetimes when walking backwards (contrary when walking
forward then uses may or may not be a kill so we need heuristics).
Check register mask operands (calls) instead of conservatively
assuming everything is clobbered. Enhance heuristics to detect
killing uses: In case of a small number of defs/uses check if they are
all in the same basic block and if so the last one is a killing use.
Enhance heuristic for copy-coalescing through hinting: We check the
first k defs of a register for COPYs rather than relying on there just
being a single definition. When testing this on the full llvm
test-suite including SPEC externals I measured:
average 5.1% reduction in code size for X86, 4.9% reduction in code on
aarch64. (ranging between 0% and 20% depending on the test) 0.5%
faster compiletime (some analysis suggests the pass is slightly slower
than before, but we more than make up for it because later passes are
faster with the reduced instruction count)
Also adds a few testcases that were broken without this patch, in
particular bug 47278.
Patch mostly by Matthias Braun
With the changes introduced in D86151 we can now check for single locations
which span multiple blocks for inlined scopes and blocks.
D86151 introduced the InstructionOrdering parameter, replacing a scan through
MBB instructions. The functionality to compare instruction positions across
blocks was add there, and this patch just removes the exit checks that were
previously (but no longer) required.
CTMark shows a geomean binary size reduction of 2.2% for RelWithDebInfo builds.
llvm-locstats (using D85636) shows a very small variable location coverage
change in 5 of 10 binaries, but just like in D86151 it is only in the order of
10s of bytes.
Reviewed By: djtodoro
Differential Revision: https://reviews.llvm.org/D86152
This patch adds type information for SVE ACLE vector types,
by describing them as vectors, with a lower bound of 0, and
an upper bound described by a DWARF expression using the
AArch64 Vector Granule register (VG), which contains the
runtime multiple of 64bit granules in an SVE vector.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D86101
Summary:
In D67768/D67492 I added support for entry values having blocks larger
than one byte, but I now noticed that the DIE implementation I added there
was broken. The takeNodes() function, that moves the entry value block
from a temporary buffer to the output buffer, would destroy the input
iterator when transferring the first node, meaning that only that node
was moved.
In practice, this meant that when emitting a call site value using a
DW_OP_entry_value operation with a DWARF register number larger than 31,
that multi-byte DW_OP_regx expression would be truncated.
Reviewers: djtodoro, aprantl, vsk
Reviewed By: djtodoro
Subscribers: llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D76279
Follow-up for D74433
What the function returns are almost standard BFD names, except that "ELF" is
in uppercase instead of lowercase.
This patch changes "ELF" to "elf" and changes ARM/AArch64 to use their BFD names.
MIPS and PPC64 have endianness differences as well, but this patch does not intend to address them.
Advantages:
* llvm-objdump: the "file format " line matches GNU objdump on ARM/AArch64 objects
* "file format " line can be extracted and fed into llvm-objcopy -O literally.
(https://github.com/ClangBuiltLinux/linux/issues/779 has such a use case)
Affected tools: llvm-readobj, llvm-objdump, llvm-dwarfdump, MCJIT (internal implementation detail, not exposed)
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D76046
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
This patch enables the debug entry values feature.
- Remove the (CC1) experimental -femit-debug-entry-values option
- Enable it for x86, arm and aarch64 targets
- Resolve the test failures
- Leave the llc experimental option for targets that do not
support the CallSiteInfo yet
Differential Revision: https://reviews.llvm.org/D73534
Summary: The lit feature object-emission was added because Hexagon did not support the integrated assembler, so some tests needed to be turned off with a Hexagon target. Hexagon now supports the integrated assembler, so this feature can be removed.
Reviewers: bcain, kparzysz, jverma, whitequark, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: mehdi_amini, hiraditya, steven_wu, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73568
This is a revert-of-revert (i.e. this reverts commit 802bec89, which
itself reverted fa4701e1 and 79daafc9) with a fix folded in. The problem
was that call site tags weren't emitted properly when LTO was enabled
along with split-dwarf. This required a minor fix. I've added a reduced
test case in test/DebugInfo/X86/fission-call-site.ll.
Original commit message:
This allows a call site tag in CU A to reference a callee DIE in CU B
without resorting to creating an incomplete duplicate DIE for the callee
inside of CU A.
We already allow cross-CU references of subprogram declarations, so it
doesn't seem like definitions ought to be special.
This improves entry value evaluation and tail call frame synthesis in
the LTO setting. During LTO, it's common for cross-module inlining to
produce a call in some CU A where the callee resides in a different CU,
and there is no declaration subprogram for the callee anywhere. In this
case llvm would (unnecessarily, I think) emit an empty DW_TAG_subprogram
in order to fill in the call site tag. That empty 'definition' defeats
entry value evaluation etc., because the debugger can't figure out what
it means.
As a follow-up, maybe we could add a DWARF verifier check that a
DW_TAG_subprogram at least has a DW_AT_name attribute.
Update #1:
Reland with a fix to create a declaration DIE when the declaration is
missing from the CU's retainedTypes list. The declaration is left out
of the retainedTypes list in two cases:
1) Re-compiling pre-r266445 bitcode (in which declarations weren't added
to the retainedTypes list), and
2) Doing LTO function importing (which doesn't update the retainedTypes
list).
It's possible to handle (1) and (2) by modifying the retainedTypes list
(in AutoUpgrade, or in the LTO importing logic resp.), but I don't see
an advantage to doing it this way, as it would cause more DWARF to be
emitted compared to creating the declaration DIEs lazily.
Update #2:
Fold in a fix for call site tag emission in the split-dwarf + LTO case.
Tested with a stage2 ThinLTO+RelWithDebInfo build of clang, and with a
ReleaseLTO-g build of the test suite.
rdar://46577651, rdar://57855316, rdar://57840415, rdar://58888440
Differential Revision: https://reviews.llvm.org/D70350
... as well as:
Revert "[DWARF] Defer creating declaration DIEs until we prepare call site info"
This reverts commit fa4701e197.
This reverts commit 79daafc903.
There have been reports of this assert getting hit:
CalleeDIE && "Could not find DIE for call site entry origin
This allows a call site tag in CU A to reference a callee DIE in CU B
without resorting to creating an incomplete duplicate DIE for the callee
inside of CU A.
We already allow cross-CU references of subprogram declarations, so it
doesn't seem like definitions ought to be special.
This improves entry value evaluation and tail call frame synthesis in
the LTO setting. During LTO, it's common for cross-module inlining to
produce a call in some CU A where the callee resides in a different CU,
and there is no declaration subprogram for the callee anywhere. In this
case llvm would (unnecessarily, I think) emit an empty DW_TAG_subprogram
in order to fill in the call site tag. That empty 'definition' defeats
entry value evaluation etc., because the debugger can't figure out what
it means.
As a follow-up, maybe we could add a DWARF verifier check that a
DW_TAG_subprogram at least has a DW_AT_name attribute.
Update:
Reland with a fix to create a declaration DIE when the declaration is
missing from the CU's retainedTypes list. The declaration is left out
of the retainedTypes list in two cases:
1) Re-compiling pre-r266445 bitcode (in which declarations weren't added
to the retainedTypes list), and
2) Doing LTO function importing (which doesn't update the retainedTypes
list).
It's possible to handle (1) and (2) by modifying the retainedTypes list
(in AutoUpgrade, or in the LTO importing logic resp.), but I don't see
an advantage to doing it this way, as it would cause more DWARF to be
emitted compared to creating the declaration DIEs lazily.
Tested with a stage2 ThinLTO+RelWithDebInfo build of clang, and with a
ReleaseLTO-g build of the test suite.
rdar://46577651, rdar://57855316, rdar://57840415
Differential Revision: https://reviews.llvm.org/D70350
Summary:
With -gdwarf-5 local variable locations are emitted as DW_FORM_loclistx
form instead of the regular DW_FORM_sec_offset. Teach
DWARFDie::getLocations to understand the new format and use it in
llvm-symbolizer "FRAME" command.
Reviewers: pcc, jdoerfert
Subscribers: srhines, aprantl, hiraditya, rupprecht, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70756
The change allows clang -mno-omit-leaf-frame-pointer to disable frame
pointer elimination. This behavior matches X86 and Mips, and also GCC
AArch64.
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D71168
Support for tracking registers that forward function parameters into the
following function frame. For now we only support cases when parameter
is forwarded through single register.
Reviewers: aprantl, vsk, t.p.northover
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D66953
llvm-svn: 374033
Summary:
This catches malformed mir files which specify alignment as log2 instead of pow2.
See https://reviews.llvm.org/D65945 for reference,
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: MatzeB, qcolombet, dschuff, arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67433
llvm-svn: 371608
The "join" method in LiveDebugValues does not attempt to join unseen
predecessor blocks if their out-locations aren't yet initialized, instead
the block should be re-visited later to see if any locations have changed
validity. However, because the set of blocks were all being "process"'d
once before "join" saw them, that logic in "join" was actually ignoring
legitimate out-locations on the first pass through. This meant that some
invalidated locations were not removed from the head of loops, allowing
illegal locations to persist.
Fix this by removing the run of "process" before the main join/process loop
in ExtendRanges. Now the unseen predecessors that "join" skips truly are
uninitialized, and we come back to the block at a later time to re-run
"join", see the @baz function added.
This also fixes another fault where stack/register transfers in the entry
block (or any other before-any-loop-block) had their tranfers initially
ignored, and were then never revisited. The MIR test added tests for this
behaviour.
XFail a test that exposes another bug; a fix for this is coming in D66895.
Differential Revision: https://reviews.llvm.org/D66663
llvm-svn: 370328
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
> llvm-svn: 363046
llvm-svn: 363786
This patch changes MIR stack-id from an integer to an enum,
and adds printing/parsing support for this in MIR files. The default
stack-id '0' is now renamed to 'default'.
This should make MIR tests that have stack objects with different stack-ids
more descriptive. It also clarifies code operating on StackID.
Reviewers: arsenm, thegameg, qcolombet
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D60137
llvm-svn: 363533
Constants, including G_GLOBAL_VALUE, are all emitted into the entry block which
lets us use the vreg def assuming it dominates all other users. However, it can
cause jumpy debug behaviour since the DebugLoc attached to these MIs are from
a user instruction that could be in a different block.
Fixes PR40887.
Differential Revision: https://reviews.llvm.org/D63286
llvm-svn: 363331
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
llvm-svn: 363046
This commit reapplies r359426 (which was reverted in r360301 due to
performance problems) and rolls in D61940 to address the performance problem.
I've combined the two to avoid creating a span of slow-performance, and to
ease reverting if more problems crop up.
The summary of D61940: This patch removes the "ChangingRegs" facility in
DbgEntityHistoryCalculator, as its overapproximate nature can produce incorrect
variable locations. An unchanging register doesn't mean a variable doesn't
change its location.
The patch kills off everything that calculates the ChangingRegs vector.
Previously ChangingRegs spotted epilogues and marked registers as unchanging if
they weren't modified outside the epilogue, increasing the chance that we can
emit a single-location variable record. Without this feature,
debug-loc-offset.mir and pr19307.mir become temporarily XFAIL. They'll be
re-enabled by D62314, using the FrameDestroy flag to identify epilogues, I've
split this into two steps as FrameDestroy isn't necessarily supported by all
backends.
The logic for terminating variable locations at the end of a basic block now
becomes much more enjoyably simple: we just terminate them all.
Other test changes: inlined-argument.ll becomes XFAIL, but for a longer term.
The current algorithm for detecting that a variable has a single-location
doesn't work in this scenario (inlined function in multiple blocks), only other
bugs were making this test work. fission-ranges.ll gets slightly refreshed too,
as the location of "p" is now correctly determined to be a single location.
Differential Revision: https://reviews.llvm.org/D61940
llvm-svn: 362951
Summary:
This is a follow-up to D57510. This patch stops DebugHandlerBase from
changing the starting label for the first non-overlapping,
register-described parameter DBG_VALUEs to the beginning of the
function. That code did not consider what defined the registers, which
could result in the ranges for the debug values starting before their
defining instructions. We currently do not emit debug values for
constant values directly at the start of the function, so this code is
still useful for such values, but my intention is to remove the code
from DebugHandlerBase completely when we get there. One reason for
removing it is that the code violates the history map's ranges, which I
think can make it quite confusing when troubleshooting.
In D57510, PrologEpilogInserter was amended so that parameter DBG_VALUEs
now are kept at the start of the entry block, even after emission of
prologue code. That was done to reduce the degradation of debug
completeness from this patch. PR40638 is another example, where the
lexical-scope trimming that LDV does, in combination with scheduling,
results in instructions after the prologue being left without locations.
There might be other cases where the DBG_VALUEs are pushed further down,
for which the DebugHandlerBase code may be helpful, but as it now quite
often result in incorrect locations, even after the prologue, it seems
better to remove that code, and try to work our way up with accurate
locations.
In the long run we should maybe not aim to provide accurate locations
inside the prologue. Some single location descriptions, at least those
referring to stack values, generate inaccurate values inside the
epilogue, so we maybe should not aim to achieve accuracy for location
lists. However, it seems that we now emit line number programs that can
result in GDB and LLDB stopping inside the prologue when doing line
number stepping into functions. See PR40188 for more information.
A summary of some of the changed test cases is available in PR40188#c2.
Reviewers: aprantl, dblaikie, rnk, jmorse
Reviewed By: aprantl
Subscribers: jdoerfert, jholewinski, jvesely, javed.absar, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D57511
llvm-svn: 353928
compiler identification lines in test-cases.
(Doing so only because it's then easier to search for references which
are actually important and need fixing.)
llvm-svn: 351200
Part of the effort to refactoring frame pointer code generation. We used
to use two function attributes "no-frame-pointer-elim" and
"no-frame-pointer-elim-non-leaf" to represent three kinds of frame
pointer usage: (all) frames use frame pointer, (non-leaf) frames use
frame pointer, (none) frame use frame pointer. This CL makes the idea
explicit by using only one enum function attribute "frame-pointer"
Option "-frame-pointer=" replaces "-disable-fp-elim" for tools such as
llc.
"no-frame-pointer-elim" and "no-frame-pointer-elim-non-leaf" are still
supported for easy migration to "frame-pointer".
tests are mostly updated with
// replace command line args ‘-disable-fp-elim=false’ with ‘-frame-pointer=none’
grep -iIrnl '\-disable-fp-elim=false' * | xargs sed -i '' -e "s/-disable-fp-elim=false/-frame-pointer=none/g"
// replace command line args ‘-disable-fp-elim’ with ‘-frame-pointer=all’
grep -iIrnl '\-disable-fp-elim' * | xargs sed -i '' -e "s/-disable-fp-elim/-frame-pointer=all/g"
Patch by Yuanfang Chen (tabloid.adroit)!
Differential Revision: https://reviews.llvm.org/D56351
llvm-svn: 351049
- When signing return addresses with -msign-return-address=<scope>{+<key>},
either the A key instructions or the B key instructions can be used. To
correctly authenticate the return address, the unwinder/debugger must know
which key was used to sign the return address.
- When and exception is thrown or a break point reached, it may be necessary to
unwind the stack. To accomplish this, the unwinder/debugger must be able to
first authenticate an the return address if it has been signed.
- To enable this, the augmentation string of CIEs has been extended to allow
inclusion of a 'B' character. Functions that are signed using the B key
variant of the instructions should have and FDE whose associated CIE has a 'B'
in the augmentation string.
- One must also be able to preserve these semantics when first stepping from a
high level language into assembly and then, as a second step, into an object
file. To achieve this, I have introduced a new assembly directive
'.cfi_b_key_frame ', that tells the assembler the current frame uses return
address signing with the B key.
- This ensures that the FDE is associated with a CIE that has 'B' in the
augmentation string.
Differential Revision: https://reviews.llvm.org/D51798
llvm-svn: 349895
These tests are meant to test dwarf emission (or prolog/epilogue
generation) so we can convert them to .mir and only run the relevant
part of the pipeline.
This way they become independent of changes in earlier passes such as my
planned changes to RegAllocFast.
llvm-svn: 345919