This patch slightly changes the API in the attempt to simplify resource buffer
queries. It is done in preparation for a patch that will enable support for
macro fusion.
llvm-svn: 368994
This should be the last bit of refactoring in preparation for a patch that would
finally fix PR37494.
This patch introduces the concept of memory dependency groups (class
MemoryGroup) and "Load/Store Unit token" (LSUToken) to track the status of a
memory operation.
A MemoryGroup is a node of a memory dependency graph. It is used internally to
classify memory operations based on the memory operations they depend on. Let I
and J be two memory operations, we say that I and J equivalent (for the purpose
of mapping instructions to memory dependency groups) if the set of memory
operations they depend depend on is identical.
MemoryGroups are identified by so-called LSUToken (a unique group identifier
assigned by the LSUnit to every group). When an instruction I is dispatched to
the LSUnit, the LSUnit maps I to a group, and then returns a LSUToken.
LSUTokens are used by class Scheduler to track memory dependencies.
This patch simplifies the LSUnit interface and moves most of the implementation
details to its base class (LSUnitBase). There is no user visible change to the
output.
llvm-svn: 361950
This fixes a problem where back-pressure increases caused by register
dependencies were not correctly notified if execution was also delayed by memory
dependencies.
llvm-svn: 361740
CriticalRegDep has been renamed CriticalDependency, and it is now used by class
Instruction to store information about the critical register dependency and the
critical memory dependency. No functional change intendend.
llvm-svn: 361737
Class LSUnitBase provides a abstract interface for all the concrete LS units in
llvm-mca.
Methods exposed by the public abstract LSUnitBase interface are:
- Status isAvailable(const InstRef&);
- void dispatch(const InstRef &);
- const InstRef &isReady(const InstRef &);
LSUnitBase standardises the API, but not the data structures internally used by
LS units. This allows for more flexibility.
Previously, only method `isReady()` was declared virtual by class LSUnit.
Also, derived classes had to inherit all the internal data members of LSUnit.
No functional change intended.
llvm-svn: 361496
This patch adds a new flag named -bottleneck-analysis to print out information
about throughput bottlenecks.
MCA knows how to identify and classify dynamic dispatch stalls. However, it
doesn't know how to analyze and highlight kernel bottlenecks. The goal of this
patch is to teach MCA how to correlate increases in backend pressure to backend
stalls (and therefore, the loss of throughput).
From a Scheduler point of view, backend pressure is a function of the scheduler
buffer usage (i.e. how the number of uOps in the scheduler buffers changes over
time). Backend pressure increases (or decreases) when there is a mismatch
between the number of opcodes dispatched, and the number of opcodes issued in
the same cycle. Since buffer resources are limited, continuous increases in
backend pressure would eventually leads to dispatch stalls. So, there is a
strong correlation between dispatch stalls, and how backpressure changed over
time.
This patch teaches how to identify situations where backend pressure increases
due to:
- unavailable pipeline resources.
- data dependencies.
Data dependencies may delay execution of instructions and therefore increase the
time that uOps have to spend in the scheduler buffers. That often translates to
an increase in backend pressure which may eventually lead to a bottleneck.
Contention on pipeline resources may also delay execution of instructions, and
lead to a temporary increase in backend pressure.
Internally, the Scheduler classifies instructions based on whether register /
memory operands are available or not.
An instruction is marked as "ready to execute" only if data dependencies are
fully resolved.
Every cycle, the Scheduler attempts to execute all instructions that are ready
to execute. If an instruction cannot execute because of unavailable pipeline
resources, then the Scheduler internally updates a BusyResourceUnits mask with
the ID of each unavailable resource.
ExecuteStage is responsible for tracking changes in backend pressure. If backend
pressure increases during a cycle because of contention on pipeline resources,
then ExecuteStage sends a "backend pressure" event to the listeners.
That event would contain information about instructions delayed by resource
pressure, as well as the BusyResourceUnits mask.
Note that ExecuteStage also knows how to identify situations where backpressure
increased because of delays introduced by data dependencies.
The SummaryView observes "backend pressure" events and prints out a "bottleneck
report".
Example of bottleneck report:
```
Cycles with backend pressure increase [ 99.89% ]
Throughput Bottlenecks:
Resource Pressure [ 0.00% ]
Data Dependencies: [ 99.89% ]
- Register Dependencies [ 0.00% ]
- Memory Dependencies [ 99.89% ]
```
A bottleneck report is printed out only if increases in backend pressure
eventually caused backend stalls.
About the time complexity:
Time complexity is linear in the number of instructions in the
Scheduler::PendingSet.
The average slowdown tends to be in the range of ~5-6%.
For memory intensive kernels, the slowdown can be significant if flag
-noalias=false is specified. In the worst case scenario I have observed a
slowdown of ~30% when flag -noalias=false was specified.
We can definitely recover part of that slowdown if we optimize class LSUnit (by
doing extra bookkeeping to speedup queries). For now, this new analysis is
disabled by default, and it can be enabled via flag -bottleneck-analysis. Users
of MCA as a library can enable the generation of pressure events through the
constructor of ExecuteStage.
This patch partially addresses https://bugs.llvm.org/show_bug.cgi?id=37494
Differential Revision: https://reviews.llvm.org/D58728
llvm-svn: 355308
Dispatch stall cycles may be associated to multiple dispatch stall events.
Before this patch, each stall cycle was associated with a single stall event.
This patch also improves a couple of code comments, and adds a helper method to
query the Scheduler for dispatch stalls.
llvm-svn: 354877
Every cycle, the Scheduler checks if instructions in the ReadySet can be issued
to the underlying pipelines. If an instruction cannot be issued because one or
more pipeline resources are unavailable, then field
Instruction::CriticalResourceMask is updated with the resource identifier of the
unavailable resources.
If an instruction cannot be promoted from the PendingSet to the ReadySet because
of a memory dependency, then field Instruction::CriticalMemDep is updated with
the identifier of the dependending memory instruction.
Bottleneck information is collected after every cycle for instructions that are
waiting to execute. The idea is to help identify causes of bottlenecks; this
information can be used in future to implement a bottleneck analysis.
llvm-svn: 354490
This patch introduces a new instruction stage named 'IS_PENDING'.
An instruction transitions from the IS_DISPATCHED to the IS_PENDING stage if
input registers are not available, but their latency is known.
This patch also adds a new set of instructions named 'PendingSet' to class
Scheduler. The idea is that the PendingSet will only contain instructions that
have reached the IS_PENDING stage.
By construction, an instruction in the PendingSet is only dependent on
instructions that have already reached the execution stage. The plan is to use
this knowledge to identify bottlenecks caused by data dependencies (see
PR37494).
Differential Revision: https://reviews.llvm.org/D58066
llvm-svn: 353937
This is a follow up of r353706. When the scheduler fails to issue a ready
instruction to the underlying pipelines, it now updates a mask of 'busy resource
units'. That information will be used in future to obtain the set of
"problematic" resources in the case of bottlenecks caused by resource pressure.
No functional change intended.
llvm-svn: 353728
In case of bottlenecks caused by pipeline pressure, we want to be able to
correctly report the set of problematic pipelines. This is a first step towards
adding support for bottleneck hints in llvm-mca (see PR37494). No functional
change intended.
llvm-svn: 353706
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Added field 'MustIssueImmediately' to the instruction descriptor of instructions
that only consume in-order issue/dispatch processor resources.
This speeds up queries from the hardware Scheduler, and gives an average ~5%
speedup on a release build.
No functional change intended.
llvm-svn: 350397