MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
The initial version of this commit was missing support for float literals that
used to be printed in decimal notation as a fallback, but ended up being
printed in hexadecimal format which became the fallback for special values.
The decimal fallback behavior was not exercised by tests. It is currently
reinstated and tested by the newly added test @f32_potential_precision_loss in
parser.mlir.
PiperOrigin-RevId: 260790900
MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
PiperOrigin-RevId: 260018802
As the number of contributors begins to scale, and the number of tests rise, it is important to detail the testing strategy in MLIR and best practices for writing those tests.
PiperOrigin-RevId: 258612585
This allows for the attribute to hold symbolic references to other operations than FuncOp. This also allows for removing the dependence on FuncOp from the base Builder.
PiperOrigin-RevId: 257650017
This is an important step in allowing for the top-level of the IR to be extensible. FuncOp and ModuleOp contain all of the necessary functionality, while using the existing operation infrastructure. As an interim step, many of the usages of Function and Module, including the name, will remain the same. In the future, many of these will be relaxed to allow for many different types of top-level operations to co-exist.
PiperOrigin-RevId: 256427100
As with Functions, Module will soon become an operation, which are value-typed. This eases the transition from Module to ModuleOp. A new class, OwningModuleRef is provided to allow for owning a reference to a Module, and will auto-delete the held module on destruction.
PiperOrigin-RevId: 256196193
Now that Locations are attributes, they have direct access to the MLIR context. This allows for simplifying error emission by removing unnecessary context lookups.
PiperOrigin-RevId: 255112791
The current syntax separates the name and value with ':', but ':' is already overloaded by several other things(e.g. trailing types). This makes the syntax difficult to parse in some situtations:
Old:
"foo: 10 : i32"
New:
"foo = 10 : i32"
PiperOrigin-RevId: 255097928
This is the standard syntax for types on operations, and is also already used by IntegerAttr and FloatAttr.
Example:
dense<5> : tensor<i32>
dense<[3]> : tensor<1xi32>
PiperOrigin-RevId: 255069157
This CL adds the basic SPIR-V serializer and deserializer for converting
SPIR-V module into the binary format and back. Right now only an empty
module with addressing model and memory model is supported; (de)serialize
other components will be added gradually with subsequent CLs.
The purpose of this library is to enable importing SPIR-V binary modules
to run transformations on them and exporting SPIR-V modules to be consumed
by execution environments. The focus is transformations, which inevitably
means changes to the binary module; so it is not designed to be a general
tool for investigating the SPIR-V binary module and does not guarantee
roundtrip equivalence (at least for now).
PiperOrigin-RevId: 254473019
https://www.khronos.org/registry/spir-v/specs/1.0/SPIRV.html#OpTypeImage.
Add new enums to describe Image dimensionality, Image Depth, Arrayed
information, Sampling, Sampler User information, and Image format.
Doesn's support the Optional Access qualifier at this stage
Fix Enum generator for tblgen to add "_" at the beginning if the enum
starts with a number.
PiperOrigin-RevId: 254091423
This name has caused some confusion because it suggests that it's running op verification (and that this verification isn't getting run by default).
PiperOrigin-RevId: 254035268
This is a direct modelling of SPIR-V's OpVariable. The custom assembly format
parsers/prints descriptor in a nicer way if presents. There are other common
decorations that can appear on variables like builtin, which can be supported
later.
This CL additionally deduplicates the parser/printer/verifier declaration
in op definitions by adding defaults to SPV_Op base.
by adding
PiperOrigin-RevId: 253828254
Enum attributes can be defined using `EnumAttr`, which requires all its cases
to be defined with `EnumAttrCase`. To facilitate the interaction between
`EnumAttr`s and their C++ consumers, add a new EnumsGen TableGen backend
to generate a few common utilities, including an enum class, `llvm::DenseMapInfo`
for the enum class, conversion functions from/to strings.
This is controlled via the `-gen-enum-decls` and `-gen-enum-defs` command-line
options of `mlir-tblgen`.
PiperOrigin-RevId: 252209623
When manipulating generic operations, such as in dialect conversion /
rewriting, it is often necessary to view a list of Values as operands to an
operation without creating the operation itself. The absence of such view
makes dialect conversion patterns, among others, to use magic numbers to obtain
specific operands from a list of rewritten values when converting an operation.
Introduce XOpOperandAdaptor classes that wrap an ArrayRef<Value *> and provide
accessor functions identical to those available in XOp. This makes it possible
for conversions to use these adaptors to address the operands with names rather
than rely on their position in the list. The adaptors are generated from ODS
together with the actual operation definitions.
This is another step towards making dialect conversion patterns specific for a
given operation.
Illustrate the approach on conversion patterns in the standard to LLVM dialect
conversion.
PiperOrigin-RevId: 251232899
* There is no longer a need to explicitly remap function attrs.
- This removes a potentially expensive call from the destructor of Function.
- This will enable some interprocedural transformations to now run intraprocedurally.
- This wasn't scalable and forces dialect defined attributes to override
a virtual function.
* Replacing a function is now a trivial operation.
* This is a necessary first step to representing functions as operations.
--
PiperOrigin-RevId: 249510802
Establish the following convention:
1. Container class types end in "Of" (e.g. TensorOf) and take a list of allowed types.
2. An X container where only a single type is allowed is called TypeX (e.g. I32Tensor).
3. An X container where any type is allowed is called AnyX (e.g. AnyTensor).
--
PiperOrigin-RevId: 249281018
Using ArrayRef introduces issues with the order of evaluation between a constructor and
the arguments of the subsequent calls to the `operator()`.
As a consequence the order of captures is not well-defined can go wrong with certain compilers (e.g. gcc-6.4).
This CL fixes the issue by using lambdas in lieu of ArrayRef.
--
PiperOrigin-RevId: 249114775
This reduces conflict between these and other type names, where we're moving towards "Of" indicating a container type containing certain types. It also better matches the "Neg" predicate modifier and generally is pretty understandable/readable for predicates.
--
PiperOrigin-RevId: 249076508
Previously we force the C++ namespaces to be `NS` if `SomeOp` is defined as
`NS_SomeOp`. This is too rigid as it does not support nested namespaces
well. This CL adds a "namespace" field into the Dialect class to allow
flexible namespaces.
--
PiperOrigin-RevId: 249064981
This CL turns the previous "Op Definition" doc into a manual for table-driven
op definition specification by fleshing out more details of existing mechanisms.
--
PiperOrigin-RevId: 248013274