The information about access and type sizes is necessary for
producing TBAA metadata in the new size-aware format. With this
patch, D39955 and D39956 in place we should be able to change
CodeGenTBAA::createScalarTypeNode() and
CodeGenTBAA::getBaseTypeInfo() to generate metadata in the new
format under the -new-struct-path-tbaa command-line option. For
now, this new information remains unused.
Differential Revision: https://reviews.llvm.org/D40176
llvm-svn: 319012
llvm-objcopy is getting to where it can be used in non-trivial ways
(such as for dwarf fission in clang). It now supports dwarf fission but
this feature hasn't been thoroughly tested yet. This change allows
people to optionally build clang to use llvm-objcopy rather than GNU
objcopy. By default GNU objcopy is still used so nothing should change.
Differential Revision: https://reviews.llvm.org/D39029
llvm-svn: 317960
GNU frontends don't have options like /MT, /MD
This fixes a few link error regressions with libc++ and libc++abi
Reviewers: rnk, mstorsjo, compnerd
Differential Revision: https://reviews.llvm.org/D33620
llvm-svn: 317398
Summary:
This change allows generalizing pointers in type signatures used for
cfi-icall by enabling the -fsanitize-cfi-icall-generalize-pointers flag.
This works by 1) emitting an additional generalized type signature
metadata node for functions and 2) llvm.type.test()ing for the
generalized type for translation units with the flag specified.
This flag is incompatible with -fsanitize-cfi-cross-dso because it would
require emitting twice as many type hashes which would increase artifact
size.
Reviewers: pcc, eugenis
Reviewed By: pcc
Subscribers: kcc
Differential Revision: https://reviews.llvm.org/D39358
llvm-svn: 317044
This patch fixes various places in clang to propagate may-alias
TBAA access descriptors during construction of lvalues, thus
eliminating the need for the LValueBaseInfo::MayAlias flag.
This is part of D38126 reworked to be a separate patch to
simplify review.
Differential Revision: https://reviews.llvm.org/D39008
llvm-svn: 316988
Craig noticed that CodeGen wasn't properly ignoring the
values sent to the target attribute. This patch ignores
them.
This patch also sets the 'default' for this checking to
'supported', since only X86 has implemented the support
for checking valid CPU names and Feature Names.
One test was changed to i686, since it uses a lakemont,
which would otherwise be prohibited in x86_64.
Differential Revision: https://reviews.llvm.org/D39357
llvm-svn: 316783
Summary:
Convert clang::LangAS to a strongly typed enum
Currently both clang AST address spaces and target specific address spaces
are represented as unsigned which can lead to subtle errors if the wrong
type is passed. It is especially confusing in the CodeGen files as it is
not possible to see what kind of address space should be passed to a
function without looking at the implementation.
I originally made this change for our LLVM fork for the CHERI architecture
where we make extensive use of address spaces to differentiate between
capabilities and pointers. When merging the upstream changes I usually
run into some test failures or runtime crashes because the wrong kind of
address space is passed to a function. By converting the LangAS enum to a
C++11 we can catch these errors at compile time. Additionally, it is now
obvious from the function signature which kind of address space it expects.
I found the following errors while writing this patch:
- ItaniumRecordLayoutBuilder::LayoutField was passing a clang AST address
space to TargetInfo::getPointer{Width,Align}()
- TypePrinter::printAttributedAfter() prints the numeric value of the
clang AST address space instead of the target address space.
However, this code is not used so I kept the current behaviour
- initializeForBlockHeader() in CGBlocks.cpp was passing
LangAS::opencl_generic to TargetInfo::getPointer{Width,Align}()
- CodeGenFunction::EmitBlockLiteral() was passing a AST address space to
TargetInfo::getPointerWidth()
- CGOpenMPRuntimeNVPTX::translateParameter() passed a target address space
to Qualifiers::addAddressSpace()
- CGOpenMPRuntimeNVPTX::getParameterAddress() was using
llvm::Type::getPointerTo() with a AST address space
- clang_getAddressSpace() returns either a LangAS or a target address
space. As this is exposed to C I have kept the current behaviour and
added a comment stating that it is probably not correct.
Other than this the patch should not cause any functional changes.
Reviewers: yaxunl, pcc, bader
Reviewed By: yaxunl, bader
Subscribers: jlebar, jholewinski, nhaehnle, Anastasia, cfe-commits
Differential Revision: https://reviews.llvm.org/D38816
llvm-svn: 315871
This patch is an attempt to clarify and simplify generation and
propagation of TBAA information. The idea is to pack all values
that describe a memory access, namely, base type, access type and
offset, into a single structure. This is supposed to make further
changes, such as adding support for unions and array members,
easier to prepare and review.
DecorateInstructionWithTBAA() is no more responsible for
converting types to tags. These implicit conversions not only
complicate reading the code, but also suggest assigning scalar
access tags while we generally prefer full-size struct-path tags.
TBAAPathTag is replaced with TBAAAccessInfo; the latter is now
the type of the keys of the cache map that translates access
descriptors to metadata nodes.
Fixed a bug with writing to a wrong map in
getTBAABaseTypeMetadata() (former getTBAAStructTypeInfo()).
We now check for valid base access types every time we
dereference a field. The original code only checks the top-level
base type. See isValidBaseType() / isTBAAPathStruct() calls.
Some entities have been renamed to sound more adequate and less
confusing/misleading in presence of path-aware TBAA information.
Now we do not lookup twice for the same cache entry in
getAccessTagInfo().
Refined relevant comments and descriptions.
Differential Revision: https://reviews.llvm.org/D37826
llvm-svn: 315048
This patch makes it possible to produce access tags in a uniform
manner regardless whether the resulting tag will be a scalar or a
struct-path one. getAccessTagInfo() now takes care of the actual
translation of access descriptors to tags and can handle all
kinds of accesses. Facilities that specific to scalar accesses
are eliminated.
Some more details:
* DecorateInstructionWithTBAA() is not responsible for conversion
of types to access tags anymore. Instead, it takes an access
descriptor (TBAAAccessInfo) and generates corresponding access
tag from it.
* getTBAAInfoForVTablePtr() reworked to
getTBAAVTablePtrAccessInfo() that now returns the
virtual-pointer access descriptor and not the virtual-point
type metadata.
* Added function getTBAAMayAliasAccessInfo() that returns the
descriptor for may-alias accesses.
* getTBAAStructTagInfo() renamed to getTBAAAccessTagInfo() as now
it is the only way to generate access tag by a given access
descriptor. It is capable of producing both scalar and
struct-path tags, depending on options and availability of the
base access type. getTBAAScalarTagInfo() and its cache
ScalarTagMetadataCache are eliminated.
* Now that we do not need to care about whether the resulting
access tag should be a scalar or struct-path one,
getTBAAStructTypeInfo() is renamed to getBaseTypeInfo().
* Added function getTBAAAccessInfo() that constructs access
descriptor by a given QualType access type.
This is part of D37826 reworked to be a separate patch to
simplify review.
Differential Revision: https://reviews.llvm.org/D38503
llvm-svn: 314979
This patch makes it possible to produce access tags in a uniform
manner regardless whether the resulting tag will be a scalar or a
struct-path one. getAccessTagInfo() now takes care of the actual
translation of access descriptors to tags and can handle all
kinds of accesses. Facilities that specific to scalar accesses
are eliminated.
Some more details:
* DecorateInstructionWithTBAA() is not responsible for conversion
of types to access tags anymore. Instead, it takes an access
descriptor (TBAAAccessInfo) and generates corresponding access
tag from it.
* getTBAAInfoForVTablePtr() reworked to
getTBAAVTablePtrAccessInfo() that now returns the
virtual-pointer access descriptor and not the virtual-point
type metadata.
* Added function getTBAAMayAliasAccessInfo() that returns the
descriptor for may-alias accesses.
* getTBAAStructTagInfo() renamed to getTBAAAccessTagInfo() as now
it is the only way to generate access tag by a given access
descriptor. It is capable of producing both scalar and
struct-path tags, depending on options and availability of the
base access type. getTBAAScalarTagInfo() and its cache
ScalarTagMetadataCache are eliminated.
* Now that we do not need to care about whether the resulting
access tag should be a scalar or struct-path one,
getTBAAStructTypeInfo() is renamed to getBaseTypeInfo().
* Added function getTBAAAccessInfo() that constructs access
descriptor by a given QualType access type.
This is part of D37826 reworked to be a separate patch to
simplify review.
Differential Revision: https://reviews.llvm.org/D38503
llvm-svn: 314977
With this patch we implement a concept of TBAA access descriptors
that are capable of representing both scalar and struct-path
accesses in a generic way.
This is part of D37826 reworked to be a separate patch to
simplify review.
Differential Revision: https://reviews.llvm.org/D38456
llvm-svn: 314780
This patch fixes misleading names of entities related to getting,
setting and generation of TBAA access type descriptors.
This is effectively an attempt to provide a review for D37826 by
breaking it into smaller pieces.
Differential Revision: https://reviews.llvm.org/D38404
llvm-svn: 314657
Currently, if _attribute_((section())) is used for extern variables,
section information is not emitted in generated IR when the variables are used.
This is expected since sections are not generated for external linkage objects.
However NiosII requires this information as it uses special GP-relative accesses
for any objects that use attribute section (.sdata). GCC keeps this attribute in
middle-end.
This change emits the section information for all targets.
Patch By: Elizabeth Andrews
Differential Revision:https://reviews.llvm.org/D36487
llvm-svn: 314262
Summary:
This is the follow-up patch to D37924.
This change refactors clang to use the the newly added section headers
in SpecialCaseList to specify which sanitizers blacklists entries
should apply to, like so:
[cfi-vcall]
fun:*bad_vcall*
[cfi-derived-cast|cfi-unrelated-cast]
fun:*bad_cast*
The SanitizerSpecialCaseList class has been added to allow querying by
SanitizerMask, and SanitizerBlacklist and its downstream users have been
updated to provide that information. Old blacklists not using sections
will continue to function identically since the blacklist entries will
be placed into a '[*]' section by default matching against all
sanitizers.
Reviewers: pcc, kcc, eugenis, vsk
Reviewed By: eugenis
Subscribers: dberris, cfe-commits, mgorny
Differential Revision: https://reviews.llvm.org/D37925
llvm-svn: 314171
Add an option to emit limited coverage info for unused decls. It's just a
cl::opt for now to allow us to experiment quickly.
When building llc, this results in an 84% size reduction in the llvm_covmap
section, and a similar size reduction in the llvm_prf_names section. In
practice I expect the size reduction to be roughly quadratic with the size of
the program.
The downside is that coverage for headers will no longer be complete. This will
make the line/function/region coverage metrics incorrect, since they will be
artificially high. One mitigation would be to somehow disable those metrics
when using limited-coverage=true.
This is related to: llvm.org/PR34533 (make SourceBasedCodeCoverage scale)
Differential Revision: https://reviews.llvm.org/D38107
llvm-svn: 314002
Summary:
Microsoft Visual Studio expects debug locations to correspond to
statements. We used to emit locations for expressions nested inside statements.
This would confuse the debugger, causing it to stop multiple times on the
same line and breaking the "step into specific" feature. This change inhibits
the emission of debug locations for nested expressions when emitting CodeView
debug information, unless column information is enabled.
Fixes PR34312.
Reviewers: rnk, zturner
Reviewed By: rnk
Subscribers: majnemer, echristo, aprantl, cfe-commits
Differential Revision: https://reviews.llvm.org/D37529
llvm-svn: 312965
By exposing the constant initializer, the optimizer can fold many
of these constructs.
This is a recommit of r311857 that was reverted in r311898 because
an assert was hit when building Chromium.
We have to take into account that the GlobalVariable may be first
created with a different type than the initializer. This can
happen for example when the variable is a struct with tail padding
while the initializer does not have padding. In such case, the
variable needs to be destroyed an replaced with a new one with the
type of the initializer.
Differential Revision: https://reviews.llvm.org/D34992
llvm-svn: 312512
It caused PR759744.
> Emit static constexpr member as available_externally definition
>
> By exposing the constant initializer, the optimizer can fold many
> of these constructs.
>
> Differential Revision: https://reviews.llvm.org/D34992
llvm-svn: 311898
By exposing the constant initializer, the optimizer can fold many
of these constructs.
Differential Revision: https://reviews.llvm.org/D34992
llvm-svn: 311857
the interface.
The ultimate goal here is to make it easier to do some more interesting
things in constant emission, like emit constant initializers that have
ignorable side-effects, or doing the majority of an initialization
in-place and then patching up the last few things with calls. But for
now this is mostly just a refactoring.
llvm-svn: 310964
Generalize getOpenCLImageAddrSpace into getOpenCLTypeAddrSpace, such
that targets can select the address space per type.
No functional changes intended.
Initial patch by Simon Perretta.
Differential Revision: https://reviews.llvm.org/D33989
llvm-svn: 310911
This patch adds support for the `long_call`, `far`, and `near` attributes
for MIPS targets. The `long_call` and `far` attributes are synonyms. All
these attributes override `-mlong-calls` / `-mno-long-calls` command
line options for particular function.
Differential revision: https://reviews.llvm.org/D35479
llvm-svn: 308667
Convert attribute 'target' parsing from a 'pair' to a 'struct' to make further
improvements easier
The attribute 'target' parse function previously returned a pair. Convert
this to a 'pair' in order to add more functionality, and improve usability.
Differential Revision: https://reviews.llvm.org/D35574
llvm-svn: 308357
Certain targets (e.g. amdgcn) require global variable to stay in global or constant address
space. In C or C++ global variables are emitted in the default (generic) address space.
This patch introduces virtual functions TargetCodeGenInfo::getGlobalVarAddressSpace
and TargetInfo::getConstantAddressSpace to handle this in a general approach.
It only affects IR generated for amdgcn target.
Differential Revision: https://reviews.llvm.org/D33842
llvm-svn: 307470
In addition to the formal linkage rules, the Modules TS includes cases where
internal-linkage symbols within a module interface unit can be referenced from
outside the module via exported inline functions / templates. We give such
declarations "module-internal linkage", which is formally internal linkage, but
results in an externally-visible symbol.
llvm-svn: 307434
problems in testing, see comments in D34161 for some more details.
A fix is in progres in D35011, but a revert seems better now as the fix will
probably take some more time to land.
llvm-svn: 307277
Summary: OpenCL and SPIR version metadata must be generated once per module instead of once per mangled global value.
Reviewers: Anastasia, yaxunl
Reviewed By: Anastasia
Subscribers: ahatanak, cfe-commits
Differential Revision: https://reviews.llvm.org/D34235
llvm-svn: 305796
This patch provides a means to specify section-names for global variables,
functions and static variables, using #pragma directives.
This feature is only defined to work sensibly for ELF targets.
One can specify section names as:
#pragma clang section bss="myBSS" data="myData" rodata="myRodata" text="myText"
One can "unspecify" a section name with empty string e.g.
#pragma clang section bss="" data="" text="" rodata=""
Reviewers: Roger Ferrer, Jonathan Roelofs, Reid Kleckner
Differential Revision: https://reviews.llvm.org/D33412
llvm-svn: 304705
Summary:
We can emit vtable definition having inline function
if they are all emitted.
Reviewers: rjmccall, rsmith
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33437
llvm-svn: 304394