Note, this was reviewed (and more details are in) http://lists.llvm.org/pipermail/llvm-commits/Week-of-Mon-20151109/312083.html
These intrinsics currently have an explicit alignment argument which is
required to be a constant integer. It represents the alignment of the
source and dest, and so must be the minimum of those.
This change allows source and dest to each have their own alignments
by using the alignment attribute on their arguments. The alignment
argument itself is removed.
There are a few places in the code for which the code needs to be
checked by an expert as to whether using only src/dest alignment is
safe. For those places, they currently take the minimum of src/dest
alignments which matches the current behaviour.
For example, code which used to read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* %dest, i8* %src, i32 500, i32 8, i1 false)
will now read:
call void @llvm.memcpy.p0i8.p0i8.i32(i8* align 8 %dest, i8* align 8 %src, i32 500, i1 false)
For out of tree owners, I was able to strip alignment from calls using sed by replacing:
(call.*llvm\.memset.*)i32\ [0-9]*\,\ i1 false\)
with:
$1i1 false)
and similarly for memmove and memcpy.
I then added back in alignment to test cases which needed it.
A similar commit will be made to clang which actually has many differences in alignment as now
IRBuilder can generate different source/dest alignments on calls.
In IRBuilder itself, a new argument was added. Instead of calling:
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, /* isVolatile */ false)
you now call
CreateMemCpy(Dst, Src, getInt64(Size), DstAlign, SrcAlign, /* isVolatile */ false)
There is a temporary class (IntegerAlignment) which takes the source alignment and rejects
implicit conversion from bool. This is to prevent isVolatile here from passing its default
parameter to the source alignment.
Note, changes in future can now be made to codegen. I didn't change anything here, but this
change should enable better memcpy code sequences.
Reviewed by Hal Finkel.
llvm-svn: 253511
Pass MemCpyOpt doesn't check if a store instruction is nontemporal.
As a consequence, adjacent nontemporal stores are always merged into a
memset call.
Example:
;;;
define void @foo(<4 x float>* nocapture %p) {
entry:
store <4 x float> zeroinitializer, <4 x float>* %p, align 16, !nontemporal !0
%p1 = getelementptr inbounds <4 x float>, <4 x float>* %dst, i64 1
store <4 x float> zeroinitializer, <4 x float>* %p1, align 16, !nontemporal !0
ret void
}
!0 = !{i32 1}
;;;
In this example, the two nontemporal stores are combined to a memset of zero
which does not preserve the nontemporal hint. Later on the backend (tested on a
x86-64 corei7) expands that memset call into a sequence of two normal 16-byte
aligned vector stores.
opt -memcpyopt example.ll -S -o - | llc -mcpu=corei7 -o -
Before:
xorps %xmm0, %xmm0
movaps %xmm0, 16(%rdi)
movaps %xmm0, (%rdi)
With this patch, we no longer merge nontemporal stores into calls to memset.
In this example, llc correctly expands the two stores into two movntps:
xorps %xmm0, %xmm0
movntps %xmm0, 16(%rdi)
movntps %xmm0, (%rdi)
In theory, we could extend the usage of !nontemporal metadata to memcpy/memset
calls. However a change like that would only have the effect of forcing the
backend to expand !nontemporal memsets back to sequences of store instructions.
A memset library call would not have exactly the same semantic of a builtin
!nontemporal memset call. So, SelectionDAG will have to conservatively expand
it back to a sequence of !nontemporal stores (effectively undoing the merging).
Differential Revision: http://reviews.llvm.org/D13519
llvm-svn: 249820
In effect a partial revert of r237858, which was a dumb shortcut.
Looking at the dependencies of the destination should be the proper
fix: if the new memset would depend on anything other than itself,
the transformation isn't correct.
llvm-svn: 237874
Fixes PR23599, another miscompile introduced by r235232: when there is
another dependency on the destination of the created memset (i.e., the
part of the original destination that the memcpy doesn't depend on)
between the memcpy and the original memset, we would insert the created
memset after the memcpy, and thus after the other dependency.
Instead, insert the created memset right after the old one.
llvm-svn: 237858
There's no point in copying around constants, so, when all else fails,
we can still transform memcpy of memset into two independent memsets.
To quote the example, we can turn:
memset(dst1, c, dst1_size);
memcpy(dst2, dst1, dst2_size);
into:
memset(dst1, c, dst1_size);
memset(dst2, c, dst2_size);
When dst2_size <= dst1_size.
Like r235232 for copy constructors, this can occur in move constructors.
Differential Revision: http://reviews.llvm.org/D9682
llvm-svn: 237506
This fixes another miscompile introduced by r235232: when there was a
dependency on the memcpy destination other than the memset, we would
ignore it, because we only looked at the source dependency.
It was a mistake to use SrcDepInfo. Instead, just use DepInfo.
llvm-svn: 237066
MemIntrinsic::getDest() looks through pointer casts, and using it
directly when building the new GEP+memset results in stuff like:
%0 = getelementptr i64* %p, i32 16
%1 = bitcast i64* %0 to i8*
call ..memset(i8* %1, ...)
instead of the correct:
%0 = bitcast i64* %p to i8*
%1 = getelementptr i8* %0, i32 16
call ..memset(i8* %1, ...)
Instead, use getRawDest, which just gives you the i8* value.
While there, use the memcpy's dest, as it's live anyway.
In most cases, when the optimization triggers, the memset and memcpy
sizes are the same, so the built memset is 0-sized and eliminated.
The problem occurs when they're different.
Fixes a regression caused by r235232: PR23300.
llvm-svn: 235419
Harden r235258 to support any integer bitwidth. The quick glance at
the reference made me think only i32 and i64 were valid types, but
they're not special, so any overload is legal.
Thanks to David Majnemer for noticing!
llvm-svn: 235261
Followup to r235232, which caused PR23278.
We can't assume the memset and memcpy sizes have the same type, as
nothing in the language reference prevents that.
Instead, zext both to i64 if they disagree.
While there, robustify tests by using i8 %c rather than i8 0 for the
memset character.
llvm-svn: 235258
A common idiom in some code is to do the following:
memset(dst, 0, dst_size);
memcpy(dst, src, src_size);
Some of the memset is redundant; instead, we can do:
memcpy(dst, src, src_size);
memset(dst + src_size, 0,
dst_size <= src_size ? 0 : dst_size - src_size);
Original patch by: Joel Jones
Differential Revision: http://reviews.llvm.org/D498
llvm-svn: 235232
See r230786 and r230794 for similar changes to gep and load
respectively.
Call is a bit different because it often doesn't have a single explicit
type - usually the type is deduced from the arguments, and just the
return type is explicit. In those cases there's no need to change the
IR.
When that's not the case, the IR usually contains the pointer type of
the first operand - but since typed pointers are going away, that
representation is insufficient so I'm just stripping the "pointerness"
of the explicit type away.
This does make the IR a bit weird - it /sort of/ reads like the type of
the first operand: "call void () %x(" but %x is actually of type "void
()*" and will eventually be just of type "ptr". But this seems not too
bad and I don't think it would benefit from repeating the type
("void (), void () * %x(" and then eventually "void (), ptr %x(") as has
been done with gep and load.
This also has a side benefit: since the explicit type is no longer a
pointer, there's no ambiguity between an explicit type and a function
that returns a function pointer. Previously this case needed an explicit
type (eg: a function returning a void() function was written as
"call void () () * @x(" rather than "call void () * @x(" because of the
ambiguity between a function returning a pointer to a void() function
and a function returning void).
No ambiguity means even function pointer return types can just be
written alone, without writing the whole function's type.
This leaves /only/ the varargs case where the explicit type is required.
Given the special type syntax in call instructions, the regex-fu used
for migration was a bit more involved in its own unique way (as every
one of these is) so here it is. Use it in conjunction with the apply.sh
script and associated find/xargs commands I've provided in rr230786 to
migrate your out of tree tests. Do let me know if any of this doesn't
cover your cases & we can iterate on a more general script/regexes to
help others with out of tree tests.
About 9 test cases couldn't be automatically migrated - half of those
were functions returning function pointers, where I just had to manually
delete the function argument types now that we didn't need an explicit
function type there. The other half were typedefs of function types used
in calls - just had to manually drop the * from those.
import fileinput
import sys
import re
pat = re.compile(r'((?:=|:|^|\s)call\s(?:[^@]*?))(\s*$|\s*(?:(?:\[\[[a-zA-Z0-9_]+\]\]|[@%](?:(")?[\\\?@a-zA-Z0-9_.]*?(?(3)"|)|{{.*}}))(?:\(|$)|undef|inttoptr|bitcast|null|asm).*$)')
addrspace_end = re.compile(r"addrspace\(\d+\)\s*\*$")
func_end = re.compile("(?:void.*|\)\s*)\*$")
def conv(match, line):
if not match or re.search(addrspace_end, match.group(1)) or not re.search(func_end, match.group(1)):
return line
return line[:match.start()] + match.group(1)[:match.group(1).rfind('*')].rstrip() + match.group(2) + line[match.end():]
for line in sys.stdin:
sys.stdout.write(conv(re.search(pat, line), line))
llvm-svn: 235145
Similar to gep (r230786) and load (r230794) changes.
Similar migration script can be used to update test cases, which
successfully migrated all of LLVM and Polly, but about 4 test cases
needed manually changes in Clang.
(this script will read the contents of stdin and massage it into stdout
- wrap it in the 'apply.sh' script shown in previous commits + xargs to
apply it over a large set of test cases)
import fileinput
import sys
import re
rep = re.compile(r"(getelementptr(?:\s+inbounds)?\s*\()((<\d*\s+x\s+)?([^@]*?)(|\s*addrspace\(\d+\))\s*\*(?(3)>)\s*)(?=$|%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|zeroinitializer|<|\[\[[a-zA-Z]|\{\{)", re.MULTILINE | re.DOTALL)
def conv(match):
line = match.group(1)
line += match.group(4)
line += ", "
line += match.group(2)
return line
line = sys.stdin.read()
off = 0
for match in re.finditer(rep, line):
sys.stdout.write(line[off:match.start()])
sys.stdout.write(conv(match))
off = match.end()
sys.stdout.write(line[off:])
llvm-svn: 232184
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
One of several parallel first steps to remove the target type of pointers,
replacing them with a single opaque pointer type.
This adds an explicit type parameter to the gep instruction so that when the
first parameter becomes an opaque pointer type, the type to gep through is
still available to the instructions.
* This doesn't modify gep operators, only instructions (operators will be
handled separately)
* Textual IR changes only. Bitcode (including upgrade) and changing the
in-memory representation will be in separate changes.
* geps of vectors are transformed as:
getelementptr <4 x float*> %x, ...
->getelementptr float, <4 x float*> %x, ...
Then, once the opaque pointer type is introduced, this will ultimately look
like:
getelementptr float, <4 x ptr> %x
with the unambiguous interpretation that it is a vector of pointers to float.
* address spaces remain on the pointer, not the type:
getelementptr float addrspace(1)* %x
->getelementptr float, float addrspace(1)* %x
Then, eventually:
getelementptr float, ptr addrspace(1) %x
Importantly, the massive amount of test case churn has been automated by
same crappy python code. I had to manually update a few test cases that
wouldn't fit the script's model (r228970,r229196,r229197,r229198). The
python script just massages stdin and writes the result to stdout, I
then wrapped that in a shell script to handle replacing files, then
using the usual find+xargs to migrate all the files.
update.py:
import fileinput
import sys
import re
ibrep = re.compile(r"(^.*?[^%\w]getelementptr inbounds )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
normrep = re.compile( r"(^.*?[^%\w]getelementptr )(((?:<\d* x )?)(.*?)(| addrspace\(\d\)) *\*(|>)(?:$| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$))")
def conv(match, line):
if not match:
return line
line = match.groups()[0]
if len(match.groups()[5]) == 0:
line += match.groups()[2]
line += match.groups()[3]
line += ", "
line += match.groups()[1]
line += "\n"
return line
for line in sys.stdin:
if line.find("getelementptr ") == line.find("getelementptr inbounds"):
if line.find("getelementptr inbounds") != line.find("getelementptr inbounds ("):
line = conv(re.match(ibrep, line), line)
elif line.find("getelementptr ") != line.find("getelementptr ("):
line = conv(re.match(normrep, line), line)
sys.stdout.write(line)
apply.sh:
for name in "$@"
do
python3 `dirname "$0"`/update.py < "$name" > "$name.tmp" && mv "$name.tmp" "$name"
rm -f "$name.tmp"
done
The actual commands:
From llvm/src:
find test/ -name *.ll | xargs ./apply.sh
From llvm/src/tools/clang:
find test/ -name *.mm -o -name *.m -o -name *.cpp -o -name *.c | xargs -I '{}' ../../apply.sh "{}"
From llvm/src/tools/polly:
find test/ -name *.ll | xargs ./apply.sh
After that, check-all (with llvm, clang, clang-tools-extra, lld,
compiler-rt, and polly all checked out).
The extra 'rm' in the apply.sh script is due to a few files in clang's test
suite using interesting unicode stuff that my python script was throwing
exceptions on. None of those files needed to be migrated, so it seemed
sufficient to ignore those cases.
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7636
llvm-svn: 230786
Summary:
Currently, call slot optimization requires that if the destination is an
argument, the argument has the sret attribute. This is to ensure that
the memory access won't trap. In addition to sret, we can also allow the
optimization to happen for arguments that have the new dereferenceable
attribute, which gives the same guarantee.
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D5832
llvm-svn: 219950
chain became completely broken here as *all* intrinsic users ended up
being skipped, and the ones that seemed to be singled out were actually
the exact wrong set.
This is a great example of why long else-if chains can be easily
confusing. Switch the entire code to use early exits and early continues
to have simpler (and more importantly, correct) logic here, as well as
fixing the reversed logic for detecting and continuing on lifetime
intrinsics.
I've also significantly cleaned up the test case and added another test
case demonstrating an example where the optimization is not (trivially)
safe to perform.
llvm-svn: 216871
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
r183584 tries to derive some info from the code *AFTER* a call and apply
these derived info to the code *BEFORE* the call, which is not always safe
as the call in question may never return, and in this case, the derived
info is invalid.
Thank Duncan for pointing out this potential bug.
rdar://14073661
llvm-svn: 183606
The MemCpyOpt pass is capable of optimizing:
callee(&S); copy N bytes from S to D.
into:
callee(&D);
subject to some legality constraints.
Assertion is triggered when the compiler tries to evalute "sizeof(typeof(D))",
while D is an opaque-typed, 'sret' formal argument of function being compiled.
i.e. the signature of the func being compiled is something like this:
T caller(...,%opaque* noalias nocapture sret %D, ...)
The fix is that when come across such situation, instead of calling some
utility functions to get the size of D's type (which will crash), we simply
assume D has at least N bytes as implified by the copy-instruction.
rdar://14073661
llvm-svn: 183584
Listing all of the attributes for the callee of a call/invoke instruction is way
too much and makes the IR unreadable. Use references to attributes instead.
llvm-svn: 175877
The AttrBuilder is for building a collection of attributes. The Attribute object
holds only one attribute. So it's not really useful for the Attribute object to
have a creator which takes an AttrBuilder.
This has two fallouts:
1. The AttrBuilder no longer holds its internal attributes in a bit-mask form.
2. The attributes are now ordered alphabetically (hence why the tests have changed).
llvm-svn: 174110
cpyDest can be mutated in some cases, which would then cause a crash later if
indeed the memory was underaligned. This brought down several buildbots, so
I guess the underaligned case is much more common than I thought!
llvm-svn: 165228
was less aligned than the old. In the testcase this results in an overaligned
memset: the memset alignment was correct for the original memory but is too much
for the new memory. Fix this by either increasing the alignment of the new
memory or bailing out if that isn't possible. Should fix the gcc-4.7 self-host
buildbot failure.
llvm-svn: 165220
another mechanical change accomplished though the power of terrible Perl
scripts.
I have manually switched some "s to 's to make escaping simpler.
While I started this to fix tests that aren't run in all configurations,
the massive number of tests is due to a really frustrating fragility of
our testing infrastructure: things like 'grep -v', 'not grep', and
'expected failures' can mask broken tests all too easily.
Essentially, I'm deeply disturbed that I can change the testsuite so
radically without causing any change in results for most platforms. =/
llvm-svn: 159547
so that it can be reused in MemCpyOptimizer. This analysis is needed to remove
an unnecessary memcpy when returning a struct into a local variable.
rdar://11341081
PR12686
llvm-svn: 156776
patch brings numerous advantages to LLVM. One way to look at it
is through diffstat:
109 files changed, 3005 insertions(+), 5906 deletions(-)
Removing almost 3K lines of code is a good thing. Other advantages
include:
1. Value::getType() is a simple load that can be CSE'd, not a mutating
union-find operation.
2. Types a uniqued and never move once created, defining away PATypeHolder.
3. Structs can be "named" now, and their name is part of the identity that
uniques them. This means that the compiler doesn't merge them structurally
which makes the IR much less confusing.
4. Now that there is no way to get a cycle in a type graph without a named
struct type, "upreferences" go away.
5. Type refinement is completely gone, which should make LTO much MUCH faster
in some common cases with C++ code.
6. Types are now generally immutable, so we can use "Type *" instead
"const Type *" everywhere.
Downsides of this patch are that it removes some functions from the C API,
so people using those will have to upgrade to (not yet added) new API.
"LLVM 3.0" is the right time to do this.
There are still some cleanups pending after this, this patch is large enough
as-is.
llvm-svn: 134829
for pre-2.9 bitcode files. We keep x86 unaligned loads, movnt, crc32, and the
target indep prefetch change.
As usual, updating the testsuite is a PITA.
llvm-svn: 133337
aligned.
Teach memcpyopt to not give up all hope when confonted with an underaligned
memcpy feeding an overaligned byval. If the *source* of the memcpy can be
determined to be adequeately aligned, or if it can be forced to be, we can
eliminate the memcpy.
This addresses PR9794. We now compile the example into:
define i32 @f(%struct.p* nocapture byval align 8 %q) nounwind ssp {
entry:
%call = call i32 @g(%struct.p* byval align 8 %q) nounwind
ret i32 %call
}
in both x86-64 and x86-32 mode. We still don't get a tailcall though,
because tailcalls apparently can't handle byval.
llvm-svn: 131884
larger memsets. Among other things, this fixes rdar://8760394 and
allows us to handle "Example 2" from http://blog.regehr.org/archives/320,
compiling it into a single 4096-byte memset:
_mad_synth_mute: ## @mad_synth_mute
## BB#0: ## %entry
pushq %rax
movl $4096, %esi ## imm = 0x1000
callq ___bzero
popq %rax
ret
llvm-svn: 123089
allowing the memcpy to be eliminated.
Unfortunately, the requirements on byval's without explicit
alignment are really weak and impossible to predict in the
mid-level optimizer, so this doesn't kick in much with current
frontends. The fix is to change clang to set alignment on all
byval arguments.
llvm-svn: 119916
refusing to optimize two memcpy's like this:
copy A <- B
copy C <- A
if it couldn't prove that noalias(B,C). We can eliminate
the copy by producing a memmove instead of memcpy.
llvm-svn: 119694
does normal initialization and normal chaining. Change the default
AliasAnalysis implementation to NoAlias.
Update StandardCompileOpts.h and friends to explicitly request
BasicAliasAnalysis.
Update tests to explicitly request -basicaa.
llvm-svn: 116720
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
llvm-svn: 100304
Added support for address spaces and added a isVolatile field to memcpy, memmove, and memset,
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
llvm-svn: 100191
e.g., llvm.memcpy.i32(i8*, i8*, i32, i32) -> llvm.memcpy.p0i8.p0i8.i32(i8*, i8*, i32, i32, i1)
A update of langref will occur in a subsequent checkin.
llvm-svn: 99928
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
we were checking for it in the wrong order. This caused a miscompilation because the
return slot optimization assumes that the call it is dealing with is NOT a memcpy.
llvm-svn: 50444