Commit Graph

145 Commits

Author SHA1 Message Date
Chandler Carruth 89c45a162f [PM] Port GVN to the new pass manager, wire it up, and teach a couple of
tests to run GVN in both modes.

This is mostly the boring refactoring just like SROA and other complex
transformation passes. There is some trickiness in that GVN's
ValueNumber class requires hand holding to get to compile cleanly. I'm
open to suggestions about a better pattern there, but I tried several
before settling on this. I was trying to balance my desire to sink as
much implementation detail into the source file as possible without
introducing overly many layers of abstraction.

Much like with SROA, the design of this system is made somewhat more
cumbersome by the need to support both pass managers without duplicating
the significant state and logic of the pass. The same compromise is
struck here.

I've also left a FIXME in a doxygen comment as the GVN pass seems to
have pretty woeful documentation within it. I'd like to submit this with
the FIXME and let those more deeply familiar backfill the information
here now that we have a nice place in an interface to put that kind of
documentaiton.

Differential Revision: http://reviews.llvm.org/D18019

llvm-svn: 263208
2016-03-11 08:50:55 +00:00
Adam Nemet fb31d580ea [LoopDataPrefetch] Make it testable with opt
Summary:
Since this is an IR pass it's nice to be able to write tests without
llc.  This is the counterpart of the llc test under
CodeGen/PowerPC/loop-data-prefetch.ll.

Reviewers: hfinkel

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D17464

llvm-svn: 261578
2016-02-22 21:41:22 +00:00
Ashutosh Nema df6763abe8 New Loop Versioning LICM Pass
Summary:
When alias analysis is uncertain about the aliasing between any two accesses,
it will return MayAlias. This uncertainty from alias analysis restricts LICM
from proceeding further. In cases where alias analysis is uncertain we might
use loop versioning as an alternative.

Loop Versioning will create a version of the loop with aggressive aliasing
assumptions in addition to the original with conservative (default) aliasing
assumptions. The version of the loop making aggressive aliasing assumptions
will have all the memory accesses marked as no-alias. These two versions of
loop will be preceded by a memory runtime check. This runtime check consists
of bound checks for all unique memory accessed in loop, and it ensures the
lack of memory aliasing. The result of the runtime check determines which of
the loop versions is executed: If the runtime check detects any memory
aliasing, then the original loop is executed. Otherwise, the version with
aggressive aliasing assumptions is used.

The pass is off by default and can be enabled with command line option 
-enable-loop-versioning-licm.

Reviewers: hfinkel, anemet, chatur01, reames

Subscribers: MatzeB, grosser, joker.eph, sanjoy, javed.absar, sbaranga,
             llvm-commits

Differential Revision: http://reviews.llvm.org/D9151

llvm-svn: 259986
2016-02-06 07:47:48 +00:00
Adam Nemet d52ed84160 [LoopVersioning] Expose loop versioning as a pass too
Summary:
LoopVersioning is a transform utility that transform passes can use to
run-time disambiguate may-aliasing accesses. I'd like to also expose as
pass to allow it to be unit-tested.

I am planning to add support for non-aliasing annotation in
LoopVersioning and I'd like to be able to write tests directly using
this pass.

(After that feature is done, the pass could also be used to look for
optimization opportunities that are hidden behind incomplete alias
information at compile time.)

The pass drives LoopVersioning in its default way which is to fully
disambiguate may-aliasing accesses no matter how many checks are
required.

Reviewers: hfinkel, ashutosh.nema, sbaranga

Subscribers: zzheng, mssimpso, llvm-commits, sanjoy

Differential Revision: http://reviews.llvm.org/D16612

llvm-svn: 259610
2016-02-03 00:06:10 +00:00
Fiona Glaser b417d464e6 Add LoopSimplifyCFG pass
Loop transformations can sometimes fail because the loop, while in
valid rotated LCSSA form, is not in a canonical CFG form. This is
an extremely simple pass that just merges obviously redundant
blocks, which can be used to fix some known failure cases. In the
future, it may be enhanced with more cases (and have code shared with
SimplifyCFG).

This allows us to run LoopSimplifyCFG -> LoopRotate -> LoopUnroll,
so that SimplifyCFG cleans up the loop before Rotate tries to run.

Not currently used in the pass manager, since this pass doesn't do
anything unless you can hook it up in an LPM with other loop passes.
It'll be added once Chandler cleans up things to allow this.

Tested in a custom pipeline out of tree to confirm it works in
practice (in addition to the included trivial test).

llvm-svn: 259256
2016-01-29 22:35:36 +00:00
Adam Nemet e54a4fa95d LLE 6/6: Add LoopLoadElimination pass
Summary:
The goal of this pass is to perform store-to-load forwarding across the
backedge of a loop.  E.g.:

  for (i)
     A[i + 1] = A[i] + B[i]

  =>

  T = A[0]
  for (i)
     T = T + B[i]
     A[i + 1] = T

The pass relies on loop dependence analysis via LoopAccessAnalisys to
find opportunities of loop-carried dependences with a distance of one
between a store and a load.  Since it's using LoopAccessAnalysis, it was
easy to also add support for versioning away may-aliasing intervening
stores that would otherwise prevent this transformation.

This optimization is also performed by Load-PRE in GVN without the
option of multi-versioning.  As was discussed with Daniel Berlin in
http://reviews.llvm.org/D9548, this is inferior to a more loop-aware
solution applied here.  Hopefully, we will be able to remove some
complexity from GVN/MemorySSA as a consequence.

In the long run, we may want to extend this pass (or create a new one if
there is little overlap) to also eliminate loop-indepedent redundant
loads and store that *require* versioning due to may-aliasing
intervening stores/loads.  I have some motivating cases for store
elimination. My plan right now is to wait for MemorySSA to come online
first rather than using memdep for this.

The main motiviation for this pass is the 456.hmmer loop in SPECint2006
where after distributing the original loop and vectorizing the top part,
we are left with the critical path exposed in the bottom loop.  Being
able to promote the memory dependence into a register depedence (even
though the HW does perform store-to-load fowarding as well) results in a
major gain (~20%).  This gain also transfers over to x86: it's
around 8-10%.

Right now the pass is off by default and can be enabled
with -enable-loop-load-elim.  On the LNT testsuite, there are two
performance changes (negative number -> improvement):

  1. -28% in Polybench/linear-algebra/solvers/dynprog: the length of the
     critical paths is reduced
  2. +2% in Polybench/stencils/adi: Unfortunately, I couldn't reproduce this
     outside of LNT

The pass is scheduled after the loop vectorizer (which is after loop
distribution).  The rational is to try to reuse LAA state, rather than
recomputing it.  The order between LV and LLE is not critical because
normally LV does not touch scalar st->ld forwarding cases where
vectorizing would inhibit the CPU's st->ld forwarding to kick in.

LoopLoadElimination requires LAA to provide the full set of dependences
(including forward dependences).  LAA is known to omit loop-independent
dependences in certain situations.  The big comment before
removeDependencesFromMultipleStores explains why this should not occur
for the cases that we're interested in.

Reviewers: dberlin, hfinkel

Subscribers: junbuml, dberlin, mssimpso, rengolin, sanjoy, llvm-commits

Differential Revision: http://reviews.llvm.org/D13259

llvm-svn: 252017
2015-11-03 23:50:08 +00:00
Justin Bogner 19b679963f [PM] Port ADCE to the new pass manager
llvm-svn: 251725
2015-10-30 23:13:18 +00:00
Chandler Carruth 29a18a4663 [PM] Port SROA to the new pass manager.
In some ways this is a very boring port to the new pass manager as there
are no interesting analyses or dependencies or other oddities.

However, this does introduce the first good example of a transformation
pass with non-trivial state porting to the new pass manager. I've tried
to carve out patterns here to replicate elsewhere, and would appreciate
comments on whether folks like these patterns:

- A common need in the new pass manager is to effectively lift the pass
  class and some of its state into a public header file. Prior to this,
  LLVM used anonymous namespaces to provide "module private" types and
  utilities, but that doesn't scale to cases where a public header file
  is needed and the new pass manager will exacerbate that. The pattern
  I've adopted here is to use the namespace-cased-name of the core pass
  (what would be a module if we had them) as a module-private namespace.
  Then utility and other code can be declared and defined in this
  namespace. At some point in the future, we could even have
  (conditionally compiled) code that used modules features when
  available to do the same basic thing.

- I've split the actual pass run method in two in order to expose
  a private method usable by the old pass manager to wrap the new class
  with a minimum of duplicated code. I actually looked at a bunch of
  ways to automate or generate these, but they are all quite terrible
  IMO. The fundamental need is to extract the set of analyses which need
  to cross this interface boundary, and that will end up being too
  unpredictable to effectively encapsulate IMO. This is also
  a relatively small amount of boiler plate that will live a relatively
  short time, so I'm not too worried about the fact that it is boiler
  plate.

The rest of the patch is totally boring but results in a massive diff
(sorry). It just moves code around and removes or adds qualifiers to
reflect the new name and nesting structure.

Differential Revision: http://reviews.llvm.org/D12773

llvm-svn: 247501
2015-09-12 09:09:14 +00:00
Chandler Carruth 7b560d40bd [PM/AA] Rebuild LLVM's alias analysis infrastructure in a way compatible
with the new pass manager, and no longer relying on analysis groups.

This builds essentially a ground-up new AA infrastructure stack for
LLVM. The core ideas are the same that are used throughout the new pass
manager: type erased polymorphism and direct composition. The design is
as follows:

- FunctionAAResults is a type-erasing alias analysis results aggregation
  interface to walk a single query across a range of results from
  different alias analyses. Currently this is function-specific as we
  always assume that aliasing queries are *within* a function.

- AAResultBase is a CRTP utility providing stub implementations of
  various parts of the alias analysis result concept, notably in several
  cases in terms of other more general parts of the interface. This can
  be used to implement only a narrow part of the interface rather than
  the entire interface. This isn't really ideal, this logic should be
  hoisted into FunctionAAResults as currently it will cause
  a significant amount of redundant work, but it faithfully models the
  behavior of the prior infrastructure.

- All the alias analysis passes are ported to be wrapper passes for the
  legacy PM and new-style analysis passes for the new PM with a shared
  result object. In some cases (most notably CFL), this is an extremely
  naive approach that we should revisit when we can specialize for the
  new pass manager.

- BasicAA has been restructured to reflect that it is much more
  fundamentally a function analysis because it uses dominator trees and
  loop info that need to be constructed for each function.

All of the references to getting alias analysis results have been
updated to use the new aggregation interface. All the preservation and
other pass management code has been updated accordingly.

The way the FunctionAAResultsWrapperPass works is to detect the
available alias analyses when run, and add them to the results object.
This means that we should be able to continue to respect when various
passes are added to the pipeline, for example adding CFL or adding TBAA
passes should just cause their results to be available and to get folded
into this. The exception to this rule is BasicAA which really needs to
be a function pass due to using dominator trees and loop info. As
a consequence, the FunctionAAResultsWrapperPass directly depends on
BasicAA and always includes it in the aggregation.

This has significant implications for preserving analyses. Generally,
most passes shouldn't bother preserving FunctionAAResultsWrapperPass
because rebuilding the results just updates the set of known AA passes.
The exception to this rule are LoopPass instances which need to preserve
all the function analyses that the loop pass manager will end up
needing. This means preserving both BasicAAWrapperPass and the
aggregating FunctionAAResultsWrapperPass.

Now, when preserving an alias analysis, you do so by directly preserving
that analysis. This is only necessary for non-immutable-pass-provided
alias analyses though, and there are only three of interest: BasicAA,
GlobalsAA (formerly GlobalsModRef), and SCEVAA. Usually BasicAA is
preserved when needed because it (like DominatorTree and LoopInfo) is
marked as a CFG-only pass. I've expanded GlobalsAA into the preserved
set everywhere we previously were preserving all of AliasAnalysis, and
I've added SCEVAA in the intersection of that with where we preserve
SCEV itself.

One significant challenge to all of this is that the CGSCC passes were
actually using the alias analysis implementations by taking advantage of
a pretty amazing set of loop holes in the old pass manager's analysis
management code which allowed analysis groups to slide through in many
cases. Moving away from analysis groups makes this problem much more
obvious. To fix it, I've leveraged the flexibility the design of the new
PM components provides to just directly construct the relevant alias
analyses for the relevant functions in the IPO passes that need them.
This is a bit hacky, but should go away with the new pass manager, and
is already in many ways cleaner than the prior state.

Another significant challenge is that various facilities of the old
alias analysis infrastructure just don't fit any more. The most
significant of these is the alias analysis 'counter' pass. That pass
relied on the ability to snoop on AA queries at different points in the
analysis group chain. Instead, I'm planning to build printing
functionality directly into the aggregation layer. I've not included
that in this patch merely to keep it smaller.

Note that all of this needs a nearly complete rewrite of the AA
documentation. I'm planning to do that, but I'd like to make sure the
new design settles, and to flesh out a bit more of what it looks like in
the new pass manager first.

Differential Revision: http://reviews.llvm.org/D12080

llvm-svn: 247167
2015-09-09 17:55:00 +00:00
Diego Novillo 4d71113cdb Convert SampleProfile pass into a Module pass.
Eventually, we will need sample profiles to be incorporated into the
inliner's cost models.  To do this, we need the sample profile pass to
be a module pass.

This patch makes no functional changes beyond the mechanical adjustments
needed to run SampleProfile as a module pass.

llvm-svn: 245940
2015-08-25 15:25:11 +00:00
Chandler Carruth 1db22822b4 [PM/AA] Hoist the interface to TBAA into a dedicated header along with
its creation function. Update the relevant includes accordingly.

llvm-svn: 245019
2015-08-14 03:33:48 +00:00
Chandler Carruth 42ff448fe4 [PM/AA] Hoist ScopedNoAliasAA's interface into a header and move the
creation function there.

Same basic refactoring as the other alias analyses. Nothing special
required this time around.

llvm-svn: 245012
2015-08-14 02:55:50 +00:00
Chandler Carruth 17e0bc37fd [PM/AA] Hoist the interface for BasicAA into a header file.
This is the first mechanical step in preparation for making this and all
the other alias analysis passes available to the new pass manager. I'm
factoring out all the totally boring changes I can so I'm moving code
around here with no other changes. I've even minimized the formatting
churn.

I'll reformat and freshen comments on the interface now that its located
in the right place so that the substantive changes don't triger this.

llvm-svn: 244197
2015-08-06 07:33:15 +00:00
Jingyue Wu 154eb5aa1d Add a speculative execution pass
Summary:
This is a pass for speculative execution of instructions for simple if-then (triangle) control flow. It's aimed at GPUs, but could perhaps be used in other contexts. Enabling this pass gives us a 1.0% geomean improvement on Google benchmark suites, with one benchmark improving 33%.

Credit goes to Jingyue Wu for writing an earlier version of this pass.

Patched by Bjarke Roune. 

Test Plan:
This patch adds a set of tests in test/Transforms/SpeculativeExecution/spec.ll
The pass is controlled by a flag which defaults to having the pass not run.

Reviewers: eliben, dberlin, meheff, jingyue, hfinkel

Reviewed By: jingyue, hfinkel

Subscribers: majnemer, jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D9360

llvm-svn: 237459
2015-05-15 17:54:48 +00:00
Adam Nemet 938d3d63d6 New Loop Distribution pass
Summary:
This implements the initial version as was proposed earlier this year
(http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-January/080462.html).
Since then Loop Access Analysis was split out from the Loop Vectorizer
and was made into a separate analysis pass.  Loop Distribution becomes
the second user of this analysis.

The pass is off by default and can be enabled
with -enable-loop-distribution.  There is currently no notion of
profitability; if there is a loop with dependence cycles, the pass will
try to split them off from other memory operations into a separate loop.

I decided to remove the control-dependence calculation from this first
version.  This and the issues with the PDT are actively discussed so it
probably makes sense to treat it separately.  Right now I just mark all
terminator instruction required which keeps identical CFGs for each
distributed loop.  This seems to be working pretty well for 456.hmmer
where even though there is an empty if-then block in the distributed
loop initially, it gets completely removed.

The pass keeps DominatorTree and LoopInfo updated.  I've tested this
with -loop-distribute-verify with the testsuite where we distribute ~90
loops.  SimplifyLoop is violated in some cases and I have a FIXME
covering this.

Reviewers: hfinkel, nadav, aschwaighofer

Reviewed By: aschwaighofer

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8831

llvm-svn: 237358
2015-05-14 12:05:18 +00:00
Jingyue Wu 8cb6b2a292 Simplify n-ary adds by reassociation
Summary:
This transformation reassociates a n-ary add so that the add can partially reuse
existing instructions. For example, this pass can simplify

  void foo(int a, int b) {
    bar(a + b);
    bar((a + 2) + b);
  }

to

  void foo(int a, int b) {
    int t = a + b;
    bar(t);
    bar(t + 2);
  }

saving one add instruction.

Fixes PR22357 (https://llvm.org/bugs/show_bug.cgi?id=22357).

Test Plan: nary-add.ll

Reviewers: broune, dberlin, hfinkel, meheff, sanjoy, atrick

Reviewed By: sanjoy, atrick

Subscribers: llvm-commits

Differential Revision: http://reviews.llvm.org/D8950

llvm-svn: 234855
2015-04-14 04:59:22 +00:00
James Molloy 0cbb2a8603 Reapply r233175 and r233183: float2int.
This re-adds float2int to the tree, after fixing PR23038. It turns
out the argument to APSInt() is true-if-unsigned, rather than
true-if-signed :(. Added testcase and explanatory comment.

llvm-svn: 233370
2015-03-27 10:36:57 +00:00
Nick Lewycky ffb0864b44 Revert r233175 and r233183 with it. This pulls float2int back out of the tree, due to PR23038.
llvm-svn: 233350
2015-03-27 02:00:11 +00:00
James Molloy cb75d92458 Reapply r233062: "float2int": Add a new pass to demote from float to int where possible.
Now with a fix for PR23008 and extra regression test.

llvm-svn: 233175
2015-03-25 10:03:42 +00:00
Hans Wennborg e42c64551a Revert r233062 ""float2int": Add a new pass to demote from float to int where possible."
This caused PR23008, compiles failing with: "Use still stuck around after Def is
destroyed: %.sroa.speculated"

Also reverting follow-up r233064.

llvm-svn: 233105
2015-03-24 20:07:08 +00:00
James Molloy 408df5160c "float2int": Add a new pass to demote from float to int where possible.
It is possible to have code that converts from integer to float, performs operations then converts back, and the result is provably the same as if integers were used.

This can come from different sources, but the most obvious is a helper function that uses floats but the arguments given at an inlined callsites are integers.

This pass considers all integers requiring a bitwidth less than or equal to the bitwidth of the mantissa of a floating point type (23 for floats, 52 for doubles) as exactly representable in floating point.

To reduce the risk of harming efficient code, the pass only attempts to perform complete removal of inttofp/fptoint operations, not just move them around.

llvm-svn: 233062
2015-03-24 11:15:23 +00:00
Duncan P. N. Exon Smith ab58a568ee Verifier: Remove the separate -verify-di pass
Remove `DebugInfoVerifierLegacyPass` and the `-verify-di` pass.
Instead, call into the `DebugInfoVerifier` from inside
`VerifierLegacyPass::finalizeModule()`.  This better matches the logic
in `verifyModule()` (used by the new PassManager), avoids requiring two
separate passes to verify the IR, and makes the API for "add a pass to
verify the IR" simple.

Note: the `-verify-debug-info` flag still works (for now, at least;
eventually it might make sense to just remove it).

llvm-svn: 232772
2015-03-19 22:24:17 +00:00
Karthik Bhat 88db86dd29 Add a new pass "Loop Interchange"
This pass interchanges loops to provide a more cache-friendly memory access.

For e.g. given a loop like -
  for(int i=0;i<N;i++)
    for(int j=0;j<N;j++)
      A[j][i] = A[j][i]+B[j][i];

is interchanged to -
  for(int j=0;j<N;j++)
    for(int i=0;i<N;i++)
      A[j][i] = A[j][i]+B[j][i];

This pass is currently disabled by default.

To give a brief introduction it consists of 3 stages-

LoopInterchangeLegality : Checks the legality of loop interchange based on Dependency matrix.
LoopInterchangeProfitability: A very basic heuristic has been added to check for profitibility. This will evolve over time.
LoopInterchangeTransform : Which does the actual transform.

LNT Performance tests shows improvement in Polybench/linear-algebra/kernels/mvt and Polybench/linear-algebra/kernels/gemver becnmarks.

TODO:
1) Add support for reductions and lcssa phi.
2) Improve profitability model.
3) Improve loop selection algorithm to select best loop for interchange. Currently the innermost loop is selected for interchange.
4) Improve compile time regression found in llvm lnt due to this pass.
5) Fix issues in Dependency Analysis module.

A special thanks to Hal for reviewing this code.
Review: http://reviews.llvm.org/D7499

llvm-svn: 231458
2015-03-06 10:11:25 +00:00
Philip Reames d16a9b1fdc Add a pass for constructing gc.statepoint sequences w/explicit relocations
This patch consists of a single pass whose only purpose is to visit previous inserted gc.statepoints which do not have gc.relocates inserted yet, and insert them. This can be used either immediately after IR generation to perform 'early safepoint insertion' or late in the pass order to perform 'late insertion'.

This patch is setting the stage for work to continue in tree.  In particular, there are known naming and style violations in the current patch.  I'll try to get those resolved over the next week or so.  As I touch each area to make style changes, I need to make sure we have adequate testing in place.  As part of the cleanup, I will be cleaning up a collection of test cases we have out of tree and submitting them upstream. The tests included in this change are very basic and mostly to provide examples of usage.

The pass has several main subproblems it needs to address:
- First, it has identify any live pointers. In the current code, the use of address spaces to distinguish pointers to GC managed objects is hard coded, but this will become parametrizable in the near future.  Note that the current change doesn't actually contain a useful liveness analysis.  It was seperated into a followup change as the code wasn't ready to be shared.  Instead, the current implementation just considers any dominating def of appropriate pointer type to be live.
- Second, it has to identify base pointers for each live pointer. This is a fairly straight forward data flow algorithm. 
- Third, the information in the previous steps is used to actually introduce rewrites. Rather than trying to do this by hand, we simply re-purpose the code behind Mem2Reg to do this for us.

llvm-svn: 229945
2015-02-20 01:06:44 +00:00
Adam Nemet 3bfd93d789 [LoopAccesses] Create the analysis pass
This is a function pass that runs the analysis on demand.  The analysis
can be initiated by querying the loop access info via LAA::getInfo.  It
either returns the cached info or runs the analysis.

Symbolic stride information continues to reside outside of this analysis
pass. We may move it inside later but it's not a priority for me right
now.  The idea is that Loop Distribution won't support run-time stride
checking at least initially.

This means that when querying the analysis, symbolic stride information
can be provided optionally.  Whether stride information is used can
invalidate the cache entry and rerun the analysis.  Note that if the
loop does not have any symbolic stride, the entry should be preserved
across Loop Distribution and LV.

Since currently the only user of the pass is LV, I just check that the
symbolic stride information didn't change when using a cached result.

On the LV side, LoopVectorizationLegality requests the info object
corresponding to the loop from the analysis pass.  A large chunk of the
diff is due to LAI becoming a pointer from a reference.

A test will be added as part of the -analyze patch.

Also tested that with AVX, we generate identical assembly output for the
testsuite (including the external testsuite) before and after.

This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.

llvm-svn: 229893
2015-02-19 19:15:04 +00:00
NAKAMURA Takumi fa520c5f49 Revert r229622: "[LoopAccesses] Make VectorizerParams global" and others. r229622 brought cyclic dependencies between Analysis and Vector.
r229622: "[LoopAccesses] Make VectorizerParams global"
  r229623: "[LoopAccesses] Stash the report from the analysis rather than emitting it"
  r229624: "[LoopAccesses] Cache the result of canVectorizeMemory"
  r229626: "[LoopAccesses] Create the analysis pass"
  r229628: "[LoopAccesses] Change debug messages from LV to LAA"
  r229630: "[LoopAccesses] Add canAnalyzeLoop"
  r229631: "[LoopAccesses] Add missing const to APIs in VectorizationReport"
  r229632: "[LoopAccesses] Split out LoopAccessReport from VectorizerReport"
  r229633: "[LoopAccesses] Add -analyze support"
  r229634: "[LoopAccesses] Change LAA:getInfo to return a constant reference"
  r229638: "Analysis: fix buildbots"

llvm-svn: 229650
2015-02-18 08:34:47 +00:00
Adam Nemet d6b7e29815 [LoopAccesses] Create the analysis pass
This is a function pass that runs the analysis on demand.  The analysis
can be initiated by querying the loop access info via LAA::getInfo.  It
either returns the cached info or runs the analysis.

Symbolic stride information continues to reside outside of this analysis
pass. We may move it inside later but it's not a priority for me right
now.  The idea is that Loop Distribution won't support run-time stride
checking at least initially.

This means that when querying the analysis, symbolic stride information
can be provided optionally.  Whether stride information is used can
invalidate the cache entry and rerun the analysis.  Note that if the
loop does not have any symbolic stride, the entry should be preserved
across Loop Distribution and LV.

Since currently the only user of the pass is LV, I just check that the
symbolic stride information didn't change when using a cached result.

On the LV side, LoopVectorizationLegality requests the info object
corresponding to the loop from the analysis pass.  A large chunk of the
diff is due to LAI becoming a pointer from a reference.

A test will be added as part of the -analyze patch.

Also tested that with AVX, we generate identical assembly output for the
testsuite (including the external testsuite) before and after.

This is part of the patchset that converts LoopAccessAnalysis into an
actual analysis pass.

llvm-svn: 229626
2015-02-18 03:43:24 +00:00
Hal Finkel 2bb61ba2fe [BDCE] Add a bit-tracking DCE pass
BDCE is a bit-tracking dead code elimination pass. It is based on ADCE (the
"aggressive DCE" pass), with the added capability to track dead bits of integer
valued instructions and remove those instructions when all of the bits are
dead.

Currently, it does not actually do this all-bits-dead removal, but rather
replaces the instruction's uses with a constant zero, and lets instcombine (and
the later run of ADCE) do the rest. Because we essentially get a run of ADCE
"for free" while tracking the dead bits, we also do what ADCE does and removes
actually-dead instructions as well (this includes instructions newly trivially
dead because all bits were dead, but not all such instructions can be removed).

The motivation for this is a case like:

int __attribute__((const)) foo(int i);
int bar(int x) {
  x |= (4 & foo(5));
  x |= (8 & foo(3));
  x |= (16 & foo(2));
  x |= (32 & foo(1));
  x |= (64 & foo(0));
  x |= (128& foo(4));
  return x >> 4;
}

As it turns out, if you order the bit-field insertions so that all of the dead
ones come last, then instcombine will remove them. However, if you pick some
other order (such as the one above), the fact that some of the calls to foo()
are useless is not locally obvious, and we don't remove them (without this
pass).

I did a quick compile-time overhead check using sqlite from the test suite
(Release+Asserts). BDCE took ~0.4% of the compilation time (making it about
twice as expensive as ADCE).

I've not looked at why yet, but we eliminate instructions due to having
all-dead bits in:
External/SPEC/CFP2006/447.dealII/447.dealII
External/SPEC/CINT2006/400.perlbench/400.perlbench
External/SPEC/CINT2006/403.gcc/403.gcc
MultiSource/Applications/ClamAV/clamscan
MultiSource/Benchmarks/7zip/7zip-benchmark

llvm-svn: 229462
2015-02-17 01:36:59 +00:00
Chandler Carruth 30d69c2e36 [PM] Remove the old 'PassManager.h' header file at the top level of
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.

This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.

The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".

llvm-svn: 229094
2015-02-13 10:01:29 +00:00
Philip Reames 47cc673e1f Add a pass for inserting safepoints into (nearly) arbitrary IR
This pass is responsible for figuring out where to place call safepoints and safepoint polls. It doesn't actually make the relocations explicit; that's the job of the RewriteStatepointsForGC pass (http://reviews.llvm.org/D6975).

Note that this code is not yet finalized.  Its moving in tree for incremental development, but further cleanup is needed and will happen over the next few days.  It is not yet part of the standard pass order.  

Planned changes in the near future:
 - I plan on restructuring the statepoint rewrite to use the functions add to the IRBuilder a while back. 
 - In the current pass, the function "gc.safepoint_poll" is treated specially but is not an intrinsic. I plan to make identifying the poll function a property of the GCStrategy at some point in the near future.
 - As follow on patches, I will be separating a collection of test cases we have out of tree and submitting them upstream. 
 - It's not explicit in the code, but these two patches are introducing a new state for a statepoint which looks a lot like a patchpoint. There's no a transient form which doesn't yet have the relocations explicitly represented, but does prevent reordering of memory operations. Once this is in, I need to update actually make this explicit by reserving the 'unused' argument of the statepoint as a flag, updating the docs, and making the code explicitly check for such a thing. This wasn't really planned, but once I split the two passes - which was done for other reasons - the intermediate state fell out. Just reminds us once again that we need to merge statepoints and patchpoints at some point in the not that distant future.

Future directions planned:
 - Identifying more cases where a backedge safepoint isn't required to ensure timely execution of a safepoint poll.
 - Tweaking the insertion process to generate easier to optimize IR. (For example, investigating making SplitBackedge) the default.
 - Adding opt-in flags for a GCStrategy to use this pass. Once done, add this pass to the actual pass ordering.

Differential Revision: http://reviews.llvm.org/D6981

llvm-svn: 228090
2015-02-04 00:37:33 +00:00
Jingyue Wu d7966ff3b9 Add straight-line strength reduction to LLVM
Summary:
Straight-line strength reduction (SLSR) is implemented in GCC but not yet in
LLVM. It has proven to effectively simplify statements derived from an unrolled
loop, and can potentially benefit many other cases too. For example,

LLVM unrolls

  #pragma unroll
  foo (int i = 0; i < 3; ++i) {
    sum += foo((b + i) * s);
  }

into

  sum += foo(b * s);
  sum += foo((b + 1) * s);
  sum += foo((b + 2) * s);

However, no optimizations yet reduce the internal redundancy of the three
expressions:

  b * s
  (b + 1) * s
  (b + 2) * s

With SLSR, LLVM can optimize these three expressions into:

  t1 = b * s
  t2 = t1 + s
  t3 = t2 + s

This commit is only an initial step towards implementing a series of such
optimizations. I will implement more (see TODO in the file commentary) in the
near future. This optimization is enabled for the NVPTX backend for now.
However, I am more than happy to push it to the standard optimization pipeline
after more thorough performance tests.

Test Plan: test/StraightLineStrengthReduce/slsr.ll

Reviewers: eliben, HaoLiu, meheff, hfinkel, jholewinski, atrick

Reviewed By: jholewinski, atrick

Subscribers: karthikthecool, jholewinski, llvm-commits

Differential Revision: http://reviews.llvm.org/D7310

llvm-svn: 228016
2015-02-03 19:37:06 +00:00
Chandler Carruth d649c0ad56 [PM] Refactor the core logic to run EarlyCSE over a function into an
object that manages a single run of this pass.

This was already essentially how it worked. Within the run function, it
would point members at *stack local* allocations that were only live for
a single run. Instead, it seems much cleaner to have a utility object
whose lifetime is clearly bounded by the run of the pass over the
function and can use member variables in a more direct way.

This also makes it easy to plumb the analyses used into it from the pass
and will make it re-usable with the new pass manager.

No functionality changed here, its just a refactoring.

llvm-svn: 227162
2015-01-27 01:34:14 +00:00
Sanjoy Das a1837a342d Add a new pass "inductive range check elimination"
IRCE eliminates range checks of the form

  0 <= A * I + B < Length

by splitting a loop's iteration space into three segments in a way
that the check is completely redundant in the middle segment.  As an
example, IRCE will convert

  len = < known positive >
  for (i = 0; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }

to

  len = < known positive >
  limit = smin(n, len)
  // no first segment
  for (i = 0; i < limit; i++) {
    if (0 <= i && i < len) { // this check is fully redundant
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }
  for (i = limit; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }


IRCE can deal with multiple range checks in the same loop (it takes
the intersection of the ranges that will make each of them redundant
individually).

Currently IRCE does not do any profitability analysis.  That is a
TODO.

Please note that the status of this pass is *experimental*, and it is
not part of any default pass pipeline.  Having said that, I will love
to get feedback and general input from people interested in trying
this out.

This pass was originally r226201.  It was reverted because it used C++
features not supported by MSVC 2012.

Differential Revision: http://reviews.llvm.org/D6693

llvm-svn: 226238
2015-01-16 01:03:22 +00:00
Sanjoy Das 7f62ac8e4d Revert r226201 (Add a new pass "inductive range check elimination")
The change used C++11 features not supported by MSVC 2012.  I will fix
the change to use things supported MSVC 2012 and recommit shortly.

llvm-svn: 226216
2015-01-15 22:18:10 +00:00
Sanjoy Das 7059e2959d Add a new pass "inductive range check elimination"
IRCE eliminates range checks of the form

  0 <= A * I + B < Length

by splitting a loop's iteration space into three segments in a way
that the check is completely redundant in the middle segment.  As an
example, IRCE will convert

  len = < known positive >
  for (i = 0; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }

to

  len = < known positive >
  limit = smin(n, len)
  // no first segment
  for (i = 0; i < limit; i++) {
    if (0 <= i && i < len) { // this check is fully redundant
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }
  for (i = limit; i < n; i++) {
    if (0 <= i && i < len) {
      do_something();
    } else {
      throw_out_of_bounds();
    }
  }


IRCE can deal with multiple range checks in the same loop (it takes
the intersection of the ranges that will make each of them redundant
individually).

Currently IRCE does not do any profitability analysis.  That is a
TODO.

Please note that the status of this pass is *experimental*, and it is
not part of any default pass pipeline.  Having said that, I will love
to get feedback and general input from people interested in trying
this out.

Differential Revision: http://reviews.llvm.org/D6693

llvm-svn: 226201
2015-01-15 20:45:46 +00:00
Juergen Ributzka 14ae60407d [C API] Make the 'lower switch' pass available via the C API.
llvm-svn: 217630
2014-09-11 21:32:32 +00:00
Hal Finkel d67e463901 Add an AlignmentFromAssumptions Pass
This adds a ScalarEvolution-powered transformation that updates load, store and
memory intrinsic pointer alignments based on invariant((a+q) & b == 0)
expressions. Many of the simple cases we can get with ValueTracking, but we
still need something like this for the more complicated cases (such as those
with an offset) that require some algebra. Note that gcc's
__builtin_assume_aligned's optional third argument provides exactly for this
kind of 'misalignment' offset for which this kind of logic is necessary.

The primary motivation is to fixup alignments for vector loads/stores after
vectorization (and unrolling). This pass is added to the optimization pipeline
just after the SLP vectorizer runs (which, admittedly, does not preserve SE,
although I imagine it could).  Regardless, I actually don't think that the
preservation matters too much in this case: SE computes lazily, and this pass
won't issue any SE queries unless there are any assume intrinsics, so there
should be no real additional cost in the common case (SLP does preserve DT and
LoopInfo).

llvm-svn: 217344
2014-09-07 20:05:11 +00:00
Jan Vesely 5a956d49f7 Initialize FlattenCFG pass
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 215573
2014-08-13 20:31:52 +00:00
Hal Finkel 9414665a3b Add scoped-noalias metadata
This commit adds scoped noalias metadata. The primary motivations for this
feature are:
  1. To preserve noalias function attribute information when inlining
  2. To provide the ability to model block-scope C99 restrict pointers

Neither of these two abilities are added here, only the necessary
infrastructure. In fact, there should be no change to existing functionality,
only the addition of new features. The logic that converts noalias function
parameters into this metadata during inlining will come in a follow-up commit.

What is added here is the ability to generally specify noalias memory-access
sets. Regarding the metadata, alias-analysis scopes are defined similar to TBAA
nodes:

!scope0 = metadata !{ metadata !"scope of foo()" }
!scope1 = metadata !{ metadata !"scope 1", metadata !scope0 }
!scope2 = metadata !{ metadata !"scope 2", metadata !scope0 }
!scope3 = metadata !{ metadata !"scope 2.1", metadata !scope2 }
!scope4 = metadata !{ metadata !"scope 2.2", metadata !scope2 }

Loads and stores can be tagged with an alias-analysis scope, and also, with a
noalias tag for a specific scope:

... = load %ptr1, !alias.scope !{ !scope1 }
... = load %ptr2, !alias.scope !{ !scope1, !scope2 }, !noalias !{ !scope1 }

When evaluating an aliasing query, if one of the instructions is associated
with an alias.scope id that is identical to the noalias scope associated with
the other instruction, or is a descendant (in the scope hierarchy) of the
noalias scope associated with the other instruction, then the two memory
accesses are assumed not to alias.

Note that is the first element of the scope metadata is a string, then it can
be combined accross functions and translation units. The string can be replaced
by a self-reference to create globally unqiue scope identifiers.

[Note: This overview is slightly stylized, since the metadata nodes really need
to just be numbers (!0 instead of !scope0), and the scope lists are also global
unnamed metadata.]

Existing noalias metadata in a callee is "cloned" for use by the inlined code.
This is necessary because the aliasing scopes are unique to each call site
(because of possible control dependencies on the aliasing properties). For
example, consider a function: foo(noalias a, noalias b) { *a = *b; } that gets
inlined into bar() { ... if (...) foo(a1, b1); ... if (...) foo(a2, b2); } --
now just because we know that a1 does not alias with b1 at the first call site,
and a2 does not alias with b2 at the second call site, we cannot let inlining
these functons have the metadata imply that a1 does not alias with b2.

llvm-svn: 213864
2014-07-24 14:25:39 +00:00
Gerolf Hoflehner f27ae6cdcf MergedLoadStoreMotion pass
Merges equivalent loads on both sides of a hammock/diamond
and hoists into into the header.
Merges equivalent stores on both sides of a hammock/diamond
and sinks it to the footer.
Can enable if conversion and tolerate better load misses
and store operand latencies.

llvm-svn: 213396
2014-07-18 19:13:09 +00:00
Jiangning Liu 96e92c1d75 Move GlobalMerge from Transform to CodeGen.
This patch is to move GlobalMerge pass from Transform/Scalar                                                           
to CodeGen, because GlobalMerge depends on TargetMachine.
In the mean time, the macro INITIALIZE_TM_PASS is also moved
to CodeGen/Passes.h. With this fix we can avoid making
libScalarOpts depend on libCodeGen.

llvm-svn: 210951
2014-06-13 22:57:59 +00:00
Jiangning Liu b2ae37fb67 Global merge for global symbols.
This commit is to improve global merge pass and support global symbol merge.
The global symbol merge is not enabled by default. For aarch64, we need some
more back-end fix to make it really benifit ADRP CSE.

llvm-svn: 210640
2014-06-11 06:44:53 +00:00
Michael J. Spencer 289067cc3d Add LoadCombine pass.
This pass is disabled by default. Use -combine-loads to enable in -O[1-3]

Differential revision: http://reviews.llvm.org/D3580

llvm-svn: 209791
2014-05-29 01:55:07 +00:00
Rafael Espindola 5a52b9f139 Revert "Implement global merge optimization for global variables."
This reverts commit r208934.

The patch depends on aliases to GEPs with non zero offsets. That is not
supported and fairly broken.

The good news is that GlobalAlias is being redesigned and will have support
for offsets, so this patch should be a nice match for it.

llvm-svn: 208978
2014-05-16 13:02:18 +00:00
Jiangning Liu 932e1c3924 Implement global merge optimization for global variables.
This commit implements two command line switches -global-merge-on-external
and -global-merge-aligned, and both of them are false by default, so this
optimization is disabled by default for all targets.

For ARM64, some back-end behaviors need to be tuned to get this optimization
further enabled.

llvm-svn: 208934
2014-05-15 23:45:42 +00:00
Eli Bendersky a108a65df2 Add an optimization that does CSE in a group of similar GEPs.
This optimization merges the common part of a group of GEPs, so we can compute
each pointer address by adding a simple offset to the common part.

The optimization is currently only enabled for the NVPTX backend, where it has
a large payoff on some benchmarks.

Review: http://reviews.llvm.org/D3462

Patch by Jingyue Wu.

llvm-svn: 207783
2014-05-01 18:38:36 +00:00
Duncan P. N. Exon Smith 6ef5f284d6 verify-di: Implement DebugInfoVerifier
Implement DebugInfoVerifier, which steals verification relying on
DebugInfoFinder from Verifier.

  - Adds LegacyDebugInfoVerifierPassPass, a ModulePass which wraps
    DebugInfoVerifier.  Uses -verify-di command-line flag.

  - Change verifyModule() to invoke DebugInfoVerifier as well as
    Verifier.

  - Add a call to createDebugInfoVerifierPass() wherever there was a
    call to createVerifierPass().

This implementation as a module pass should sidestep efficiency issues,
allowing us to turn debug info verification back on.

<rdar://problem/15500563>

llvm-svn: 206300
2014-04-15 16:27:38 +00:00
Quentin Colombet a349084a91 [CodeGenPrepare] Move CodeGenPrepare into lib/CodeGen.
CodeGenPrepare uses extensively TargetLowering which is part of libLLVMCodeGen.
This is a layer violation which would introduce eventually a dependence on
CodeGen in ScalarOpts.

Move CodeGenPrepare into libLLVMCodeGen to avoid that.

Follow-up of <rdar://problem/15519855>

llvm-svn: 201912
2014-02-22 00:07:45 +00:00
Juergen Ributzka f26beda7c7 Revert "Revert "Add Constant Hoisting Pass" (r200034)"
This reverts commit r200058 and adds the using directive for
ARMTargetTransformInfo to silence two g++ overload warnings.

llvm-svn: 200062
2014-01-25 02:02:55 +00:00
Hans Wennborg 4d67a2e85a Revert "Add Constant Hoisting Pass" (r200034)
This commit caused -Woverloaded-virtual warnings. The two new
TargetTransformInfo::getIntImmCost functions were only added to the superclass,
and to the X86 subclass. The other targets were not updated, and the
warning highlighted this by pointing out that e.g. ARMTTI::getIntImmCost was
hiding the two new getIntImmCost variants.

We could pacify the warning by adding "using TargetTransformInfo::getIntImmCost"
to the various subclasses, or turning it off, but I suspect that it's wrong to
leave the functions unimplemnted in those targets. The default implementations
return TCC_Free, which I don't think is right e.g. for ARM.

llvm-svn: 200058
2014-01-25 01:18:18 +00:00
Juergen Ributzka 4f3df4ad64 Add Constant Hoisting Pass
Retry commit r200022 with a fix for the build bot errors. Constant expressions
have (unlike instructions) module scope use lists and therefore may have users
in different functions. The fix is to simply ignore these out-of-function uses.

llvm-svn: 200034
2014-01-24 20:18:00 +00:00
Juergen Ributzka 50e7e80d00 Revert "Add Constant Hoisting Pass"
This reverts commit r200022 to unbreak the build bots.

llvm-svn: 200024
2014-01-24 18:40:30 +00:00
Juergen Ributzka 38b67d0caf Add Constant Hoisting Pass
This pass identifies expensive constants to hoist and coalesces them to
better prepare it for SelectionDAG-based code generation. This works around the
limitations of the basic-block-at-a-time approach.

First it scans all instructions for integer constants and calculates its
cost. If the constant can be folded into the instruction (the cost is
TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
consider it expensive and leave it alone. This is the default behavior and
the default implementation of getIntImmCost will always return TCC_Free.

If the cost is more than TCC_BASIC, then the integer constant can't be folded
into the instruction and it might be beneficial to hoist the constant.
Similar constants are coalesced to reduce register pressure and
materialization code.

When a constant is hoisted, it is also hidden behind a bitcast to force it to
be live-out of the basic block. Otherwise the constant would be just
duplicated and each basic block would have its own copy in the SelectionDAG.
The SelectionDAG recognizes such constants as opaque and doesn't perform
certain transformations on them, which would create a new expensive constant.

This optimization is only applied to integer constants in instructions and
simple (this means not nested) constant cast experessions. For example:
%0 = load i64* inttoptr (i64 big_constant to i64*)

Reviewed by Eric

llvm-svn: 200022
2014-01-24 18:23:08 +00:00
Chandler Carruth 5ad5f15cff [cleanup] Move the Dominators.h and Verifier.h headers into the IR
directory. These passes are already defined in the IR library, and it
doesn't make any sense to have the headers in Analysis.

Long term, I think there is going to be a much better way to divide
these matters. The dominators code should be fully separated into the
abstract graph algorithm and have that put in Support where it becomes
obvious that evn Clang's CFGBlock's can use it. Then the verifier can
manually construct dominance information from the Support-driven
interface while the Analysis library can provide a pass which both
caches, reconstructs, and supports a nice update API.

But those are very long term, and so I don't want to leave the really
confusing structure until that day arrives.

llvm-svn: 199082
2014-01-13 09:26:24 +00:00
Richard Sandiford 8ee1b77de3 Add a Scalarizer pass.
llvm-svn: 195471
2013-11-22 16:58:05 +00:00
Hal Finkel bf45efde2d Add a loop rerolling pass
This adds a loop rerolling pass: the opposite of (partial) loop unrolling. The
transformation aims to take loops like this:

for (int i = 0; i < 3200; i += 5) {
  a[i]     += alpha * b[i];
  a[i + 1] += alpha * b[i + 1];
  a[i + 2] += alpha * b[i + 2];
  a[i + 3] += alpha * b[i + 3];
  a[i + 4] += alpha * b[i + 4];
}

and turn them into this:

for (int i = 0; i < 3200; ++i) {
  a[i] += alpha * b[i];
}

and loops like this:

for (int i = 0; i < 500; ++i) {
  x[3*i] = foo(0);
  x[3*i+1] = foo(0);
  x[3*i+2] = foo(0);
}

and turn them into this:

for (int i = 0; i < 1500; ++i) {
  x[i] = foo(0);
}

There are two motivations for this transformation:

  1. Code-size reduction (especially relevant, obviously, when compiling for
code size).

  2. Providing greater choice to the loop vectorizer (and generic unroller) to
choose the unrolling factor (and a better ability to vectorize). The loop
vectorizer can take vector lengths and register pressure into account when
choosing an unrolling factor, for example, and a pre-unrolled loop limits that
choice. This is especially problematic if the manual unrolling was optimized
for a machine different from the current target.

The current implementation is limited to single basic-block loops only. The
rerolling recognition should work regardless of how the loop iterations are
intermixed within the loop body (subject to dependency and side-effect
constraints), but the significant restriction is that the order of the
instructions in each iteration must be identical. This seems sufficient to
capture all current use cases.

This pass is not currently enabled by default at any optimization level.

llvm-svn: 194939
2013-11-16 23:59:05 +00:00
Diego Novillo 8d6568b56b SampleProfileLoader pass. Initial setup.
This adds a new scalar pass that reads a file with samples generated
by 'perf' during runtime. The samples read from the profile are
incorporated and emmited as IR metadata reflecting that profile.

The profile file is assumed to have been generated by an external
profile source. The profile information is converted into IR metadata,
which is later used by the analysis routines to estimate block
frequencies, edge weights and other related data.

External profile information files have no fixed format, each profiler
is free to define its own. This includes both the on-disk representation
of the profile and the kind of profile information stored in the file.
A common kind of profile is based on sampling (e.g., perf), which
essentially counts how many times each line of the program has been
executed during the run.

The SampleProfileLoader pass is organized as a scalar transformation.
On startup, it reads the file given in -sample-profile-file to
determine what kind of profile it contains.  This file is assumed to
contain profile information for the whole application. The profile
data in the file is read and incorporated into the internal state of
the corresponding profiler.

To facilitate testing, I've organized the profilers to support two file
formats: text and native. The native format is whatever on-disk
representation the profiler wants to support, I think this will mostly
be bitcode files, but it could be anything the profiler wants to
support. To do this, every profiler must implement the
SampleProfile::loadNative() function.

The text format is mostly meant for debugging. Records are separated by
newlines, but each profiler is free to interpret records as it sees fit.
Profilers must implement the SampleProfile::loadText() function.

Finally, the pass will call SampleProfile::emitAnnotations() for each
function in the current translation unit. This function needs to
translate the loaded profile into IR metadata, which the analyzer will
later be able to use.

This patch implements the first steps towards the above design. I've
implemented a sample-based flat profiler. The format of the profile is
fairly simplistic. Each sampled function contains a list of relative
line locations (from the start of the function) together with a count
representing how many samples were collected at that line during
execution. I generate this profile using perf and a separate converter
tool.

Currently, I have only implemented a text format for these profiles. I
am interested in initial feedback to the whole approach before I send
the other parts of the implementation for review.

This patch implements:

- The SampleProfileLoader pass.
- The base ExternalProfile class with the core interface.
- A SampleProfile sub-class using the above interface. The profiler
  generates branch weight metadata on every branch instructions that
  matches the profiles.
- A text loader class to assist the implementation of
  SampleProfile::loadText().
- Basic unit tests for the pass.

Additionally, the patch uses profile information to compute branch
weights based on instruction samples.

This patch converts instruction samples into branch weights. It
does a fairly simplistic conversion:

Given a multi-way branch instruction, it calculates the weight of
each branch based on the maximum sample count gathered from each
target basic block.

Note that this assignment of branch weights is somewhat lossy and can be
misleading. If a basic block has more than one incoming branch, all the
incoming branches will get the same weight. In reality, it may be that
only one of them is the most heavily taken branch.

I will adjust this assignment in subsequent patches.

llvm-svn: 194566
2013-11-13 12:22:21 +00:00
Chandler Carruth ebeac5cb89 Remove the long, long defunct IR block placement pass.
This pass was based on the previous (essentially unused) profiling
infrastructure and the assumption that by ordering the basic blocks at
the IR level in a particular way, the correct layout would happen in the
end. This sometimes worked, and mostly didn't. It also was a really
naive implementation of the classical paper that dates from when branch
predictors were primarily directional and when loop structure wasn't
commonly available. It also didn't factor into the equation
non-fallthrough branches and other machine level details.

Anyways, for all of these reasons and more, I wrote
MachineBlockPlacement, which completely supercedes this pass. It both
uses modern profile information infrastructure, and actually works. =]

llvm-svn: 190748
2013-09-14 09:28:14 +00:00
Richard Sandiford 37cd6cfba2 Turn MipsOptimizeMathLibCalls into a target-independent scalar transform
...so that it can be used for z too.  Most of the code is the same.
The only real change is to use TargetTransformInfo to test when a sqrt
instruction is available.

The pass is opt-in because at the moment it only handles sqrt.

llvm-svn: 189097
2013-08-23 10:27:02 +00:00
Tom Stellard aa664d9b92 Factor FlattenCFG out from SimplifyCFG
Patch by: Mei Ye

llvm-svn: 187764
2013-08-06 02:43:45 +00:00
Tom Stellard 8b1e021e85 SimplifyCFG: Use parallel-and and parallel-or mode to consolidate branch conditions
Merge consecutive if-regions if they contain identical statements.
Both transformations reduce number of branches.  The transformation
is guarded by a target-hook, and is currently enabled only for +R600,
but the correctness has been tested on X86 target using a variety of
CPU benchmarks.

Patch by: Mei Ye

llvm-svn: 187278
2013-07-27 00:01:07 +00:00
Meador Inge dfb08a2cb8 Remove the simplify-libcalls pass (finally)
This commit completely removes what is left of the simplify-libcalls
pass.  All of the functionality has now been migrated to the instcombine
and functionattrs passes.  The following C API functions are now NOPs:

  1. LLVMAddSimplifyLibCallsPass
  2. LLVMPassManagerBuilderSetDisableSimplifyLibCalls

llvm-svn: 184459
2013-06-20 19:48:07 +00:00
Matt Arsenault d46fce1141 Move StructurizeCFG out of R600 to generic Transforms.
Register it with PassManager

llvm-svn: 184343
2013-06-19 20:18:24 +00:00
Filip Pizlo dec20e43c0 This patch breaks up Wrap.h so that it does not have to include all of
the things, and renames it to CBindingWrapping.h.  I also moved 
CBindingWrapping.h into Support/.

This new file just contains the macros for defining different wrap/unwrap 
methods.

The calls to those macros, as well as any custom wrap/unwrap definitions 
(like for array of Values for example), are put into corresponding C++ 
headers.

Doing this required some #include surgery, since some .cpp files relied 
on the fact that including Wrap.h implicitly caused the inclusion of a 
bunch of other things.

This also now means that the C++ headers will include their corresponding 
C API headers; for example Value.h must include llvm-c/Core.h.  I think 
this is harmless, since the C API headers contain just external function 
declarations and some C types, so I don't believe there should be any 
nasty dependency issues here.

llvm-svn: 180881
2013-05-01 20:59:00 +00:00
Eric Christopher 04d4e9312c Move C++ code out of the C headers and into either C++ headers
or the C++ files themselves. This enables people to use
just a C compiler to interoperate with LLVM.

llvm-svn: 180063
2013-04-22 22:47:22 +00:00
Michael Gottesman 79d8d81226 Extracted ObjCARC.cpp into its own library libLLVMObjCARCOpts in preparation for refactoring the ARC Optimizer.
llvm-svn: 173647
2013-01-28 01:35:51 +00:00
Chandler Carruth 9fb823bbd4 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

llvm-svn: 171366
2013-01-02 11:36:10 +00:00
Chandler Carruth ed0881b2a6 Use the new script to sort the includes of every file under lib.
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.

Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]

llvm-svn: 169131
2012-12-03 16:50:05 +00:00
Micah Villmow cdfe20b97f Move TargetData to DataLayout.
llvm-svn: 165402
2012-10-08 16:38:25 +00:00
Chandler Carruth 1b398ae0ae Introduce a new SROA implementation.
This is essentially a ground up re-think of the SROA pass in LLVM. It
was initially inspired by a few problems with the existing pass:
- It is subject to the bane of my existence in optimizations: arbitrary
  thresholds.
- It is overly conservative about which constructs can be split and
  promoted.
- The vector value replacement aspect is separated from the splitting
  logic, missing many opportunities where splitting and vector value
  formation can work together.
- The splitting is entirely based around the underlying type of the
  alloca, despite this type often having little to do with the reality
  of how that memory is used. This is especially prevelant with unions
  and base classes where we tail-pack derived members.
- When splitting fails (often due to the thresholds), the vector value
  replacement (again because it is separate) can kick in for
  preposterous cases where we simply should have split the value. This
  results in forming i1024 and i2048 integer "bit vectors" that
  tremendously slow down subsequnet IR optimizations (due to large
  APInts) and impede the backend's lowering.

The new design takes an approach that fundamentally is not susceptible
to many of these problems. It is the result of a discusison between
myself and Duncan Sands over IRC about how to premptively avoid these
types of problems and how to do SROA in a more principled way. Since
then, it has evolved and grown, but this remains an important aspect: it
fixes real world problems with the SROA process today.

First, the transform of SROA actually has little to do with replacement.
It has more to do with splitting. The goal is to take an aggregate
alloca and form a composition of scalar allocas which can replace it and
will be most suitable to the eventual replacement by scalar SSA values.
The actual replacement is performed by mem2reg (and in the future
SSAUpdater).

The splitting is divided into four phases. The first phase is an
analysis of the uses of the alloca. This phase recursively walks uses,
building up a dense datastructure representing the ranges of the
alloca's memory actually used and checking for uses which inhibit any
aspects of the transform such as the escape of a pointer.

Once we have a mapping of the ranges of the alloca used by individual
operations, we compute a partitioning of the used ranges. Some uses are
inherently splittable (such as memcpy and memset), while scalar uses are
not splittable. The goal is to build a partitioning that has the minimum
number of splits while placing each unsplittable use in its own
partition. Overlapping unsplittable uses belong to the same partition.
This is the target split of the aggregate alloca, and it maximizes the
number of scalar accesses which become accesses to their own alloca and
candidates for promotion.

Third, we re-walk the uses of the alloca and assign each specific memory
access to all the partitions touched so that we have dense use-lists for
each partition.

Finally, we build a new, smaller alloca for each partition and rewrite
each use of that partition to use the new alloca. During this phase the
pass will also work very hard to transform uses of an alloca into a form
suitable for promotion, including forming vector operations, speculating
loads throguh PHI nodes and selects, etc.

After splitting is complete, each newly refined alloca that is
a candidate for promotion to a scalar SSA value is run through mem2reg.

There are lots of reasonably detailed comments in the source code about
the design and algorithms, and I'm going to be trying to improve them in
subsequent commits to ensure this is well documented, as the new pass is
in many ways more complex than the old one.

Some of this is still a WIP, but the current state is reasonbly stable.
It has passed bootstrap, the nightly test suite, and Duncan has run it
successfully through the ACATS and DragonEgg test suites. That said, it
remains behind a default-off flag until the last few pieces are in
place, and full testing can be done.

Specific areas I'm looking at next:
- Improved comments and some code cleanup from reviews.
- SSAUpdater and enabling this pass inside the CGSCC pass manager.
- Some datastructure tuning and compile-time measurements.
- More aggressive FCA splitting and vector formation.

Many thanks to Duncan Sands for the thorough final review, as well as
Benjamin Kramer for lots of review during the process of writing this
pass, and Daniel Berlin for reviewing the data structures and algorithms
and general theory of the pass. Also, several other people on IRC, over
lunch tables, etc for lots of feedback and advice.

llvm-svn: 163883
2012-09-14 09:22:59 +00:00
Nadav Rotem 465834c85f Clean whitespaces.
llvm-svn: 160668
2012-07-24 10:51:42 +00:00
Chandler Carruth c8acd7c96b Move the initialization of the bounds checking pass. The pass itself
moved earlier. This fixes some layering issues.

llvm-svn: 160611
2012-07-22 05:19:32 +00:00
Nuno Lopes a2f6cecb6d add a new pass to instrument loads and stores for run-time bounds checking
move EmitGEPOffset from InstCombine to Transforms/Utils/Local.h

(a draft of this) patch reviewed by Andrew, thanks.

llvm-svn: 157261
2012-05-22 17:19:09 +00:00
Dan Gohman e7a243fea5 Add a new ObjC ARC optimization pass to eliminate unneeded
autorelease push+pop pairs.

llvm-svn: 148330
2012-01-17 20:52:24 +00:00
Rafael Espindola a45c20b049 Remove the old tail duplication pass. It is not used and is unable to update
ssa, so it has to be run really early in the pipeline. Any replacement
should probably use the SSAUpdater.

llvm-svn: 138841
2011-08-30 23:03:45 +00:00
Rafael Espindola 7281395c8c Add LLVMAddLowerExpectIntrinsicPass to the C API.
llvm-svn: 135966
2011-07-25 20:57:59 +00:00
Jakub Staszak 3f158fdf6e Introduce "expect" intrinsic instructions.
llvm-svn: 134516
2011-07-06 18:22:43 +00:00
John McCall d935e9c359 The ARC language-specific optimizer. Credit to Dan Gohman.
llvm-svn: 133108
2011-06-15 23:37:01 +00:00
Rafael Espindola 6aafb64daf Add the alias analysis to the C api.
llvm-svn: 129447
2011-04-13 15:44:58 +00:00
Rafael Espindola e4e4e37580 Expose more passes to the C API.
llvm-svn: 129087
2011-04-07 18:20:46 +00:00
Dan Gohman 06d70015ce Delete the GEPSplitter experiment.
llvm-svn: 126671
2011-02-28 19:47:47 +00:00
Dan Gohman b8a25f49f3 Delete the SimplifyHalfPowrLibCalls pass, which was unused, and
only existed as the result of a misunderstanding.

llvm-svn: 126669
2011-02-28 19:41:14 +00:00
Cameron Zwarich 4694e69540 Remove outdated references to dominance frontiers.
llvm-svn: 123724
2011-01-18 03:53:26 +00:00
Chris Lattner 9987a6f49b split SROA into two passes: one that uses DomFrontiers (-scalarrepl)
and one that uses SSAUpdater (-scalarrepl-ssa)

llvm-svn: 123436
2011-01-14 08:13:00 +00:00
Cameron Zwarich cab9a0abab Add a new loop-instsimplify pass, with the intention of replacing the instance
of instcombine that is currently in the middle of the loop pass pipeline. This
commit only checks in the pass; it will hopefully be enabled by default later.

llvm-svn: 122719
2011-01-03 00:25:16 +00:00
Chris Lattner 704541bb23 sketch out a new early cse pass. No functionality yet.
llvm-svn: 122713
2011-01-02 21:47:05 +00:00
Chris Lattner 2ef535a4e4 Start of a pass for recognizing memset and memcpy idioms.
No functionality yet.

llvm-svn: 122562
2010-12-26 19:32:44 +00:00
Devang Patel 57da4caa85 Remove LoopIndexSplit pass. It is neither maintained nor used by anyone.
llvm-svn: 116004
2010-10-07 23:29:37 +00:00
Owen Anderson 4698c5d7f7 Next step on the getting-rid-of-static-ctors train: begin adding per-library
initialization functions that initialize the set of passes implemented in
that library.  Add C bindings for these functions as well.

llvm-svn: 115927
2010-10-07 17:55:47 +00:00
Nate Begeman 2e41605d4f Whoops this already existed.
llvm-svn: 98297
2010-03-11 23:21:19 +00:00
Nate Begeman 5daa235c91 Add a handful of additional useful pass manager things to the C API
llvm-svn: 98296
2010-03-11 23:06:07 +00:00
Chris Lattner 852f2653c4 remove the now dead condprop pass, PR3906.
llvm-svn: 86810
2009-11-11 05:56:35 +00:00
Chris Lattner e48f897ca7 add a bunch more passes to the C bindings (PR3734), patch by
Lennart Augustsson!

llvm-svn: 66272
2009-03-06 16:52:18 +00:00
Gordon Henriksen b81777a354 C and Objective Caml bindings for mem2reg and reg2mem.
Patch by Erick Tryzelaar.

llvm-svn: 48602
2008-03-20 17:16:03 +00:00
Gordon Henriksen 82a0e74f43 C and Objective Caml bindings for several scalar transforms.
Patch originally by Erick Tryzelaar, but has been modified somewhat.

llvm-svn: 48419
2008-03-16 16:32:40 +00:00