That patch fixes incompatible compilation unit type (DW_UT_skeleton) and root DIE (DW_TAG_compile_unit) error.
cat split-dwarf.cpp
int main()
{
int a = 1;
return 0;
}
clang++ -O -g -gsplit-dwarf -gdwarf-5 split-dwarf.cpp; llvm-dwarfdump --verify ./a.out | grep skeleton
error: Compilation unit type (DW_UT_skeleton) and root DIE (DW_TAG_compile_unit) do not match.
The fix is to change DW_TAG_compile_unit into DW_TAG_skeleton_unit when skeleton file is generated.
Differential Revision: https://reviews.llvm.org/D70880
Summary:
This does exactly what it says on the box. The only small gotcha is the
section index computation for offset_pair entries, which can use either
the base address section, or the section from the offset_pair entry.
This is to support both the cases where the base address is relocated
(points to the base of the CU, typically), and the case where the base
address is a constant (typically zero) and relocations are on the
offsets themselves.
Reviewers: dblaikie, JDevlieghere, aprantl, SouraVX
Subscribers: hiraditya, llvm-commits, probinson
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70540
The idea is to remove front-end analysis for the parameter's value
modification and leave it to the value tracking system. Front-end in some
cases marks a parameter as modified even the line of code that modifies the
parameter gets optimized, that implies that this will cover more entry
values even. In addition, extending the support for modified parameters
will be easier with this approach.
Since the goal is to recognize if a parameter’s value has changed, the idea
at very high level is: If we encounter a DBG_VALUE other than the entry
value one describing the same variable (parameter), we can assume that the
variable’s value has changed and we should not track its entry value any
more. That would be ideal scenario, but due to various LLVM optimizations,
a variable’s value could be just moved around from one register to another
(and there will be additional DBG_VALUEs describing the same variable), so
we have to recognize such situation (otherwise, we will lose a lot of entry
values) and salvage the debug entry value.
Differential Revision: https://reviews.llvm.org/D68209
This revision is revised to update Go-bindings and Release Notes.
The original commit message follows.
This patch, adds support for DW_AT_alignment[DWARF5] attribute, to be emitted with typdef DIE.
When explicit alignment is specified.
Patch by Awanish Pandey <Awanish.Pandey@amd.com>
Reviewers: aprantl, dblaikie, jini.susan.george, SouraVX, alok,
deadalinx
Differential Revision: https://reviews.llvm.org/D70111
This patch adds support for debug_macinfo.dwo section[pre-standardized]
to llvm and llvm-dwarfdump.
Reviewers: probinson, dblaikie, aprantl, jini.susan.george, alok
Differential Revision: https://reviews.llvm.org/D70705
Tags: #debug-info #llvm
This is a re-land of D56151 / r364515 with a completely new implementation.
Once MIR code leaves SSA form and the liveness of a vreg is considered,
DBG_VALUE insts are able to refer to non-live vregs, because their
debug-uses do not contribute to liveness. This non-liveness becomes
problematic for optimizations like register coalescing, as they can't
``see'' the debug uses in the liveness analyses.
As a result registers get coalesced regardless of debug uses, and that can
lead to invalid variable locations containing unexpected values. In the
added test case, the first vreg operand of ADD32rr is merged with various
copies of the vreg (great for performance), but a DBG_VALUE of the
unmodified operand is blindly updated to the modified operand. This changes
what value the variable will appear to have in a debugger.
Fix this by changing any DBG_VALUE whose operand will be resurrected by
register coalescing to be a $noreg DBG_VALUE, i.e. give the variable no
location. This is an overapproximation as some coalesced locations are safe
(others are not) -- an extra domination analysis would be required to work
out which, and it would be better if we just don't generate non-live
DBG_VALUEs.
Differential Revision: https://reviews.llvm.org/D64630
Summary:
Related bug: https://bugs.llvm.org/show_bug.cgi?id=40648
Static helper function rewriteDebugUsers in Local.cpp deletes dbg.value
intrinsics when it cannot move or rewrite them, or salvage the deleted
instruction's value. It should instead undef them in this case.
This patch fixes that and I've added a test which covers the failing test
case in bz40648. I've updated the unit test Local.ReplaceAllDbgUsesWith
to check for this behaviour (and fixed a typo in the test which would
cause the old test to always pass).
Reviewers: aprantl, vsk, djtodoro, probinson
Reviewed By: vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D70604
Summary: Add support for resolving `R_RISCV_32_PCREL` relocations. Those aren't
actually resolved AFAIK, but support is still needed to avoid llvm-dwarfdump
errors. The use of these relocations was introduced in D66419 but the
corresponding resolving wasn't added then. The test adds a check that should
catch future unresolved relocations.
Reviewers: asb, lenary
Reviewed By: asb
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70204
DwarfExpression::addMachineReg() knows how to build a larger register
that isn't expressible in DWARF by combining multiple
subregisters. However, if the entire value fits into just one
subregister, it would still emit the other subregisters, leading to
all sorts of inconsistencies down the line.
This patch fixes that by moving an already existing(!) check whether
the subregister's offset is before the end of the value to the right
place.
rdar://problem/57294211
Differential Revision: https://reviews.llvm.org/D70508
Currently, clang emits subprograms for declared functions when the
target debugger or DWARF standard is known to support entry values
(DW_OP_entry_value & the GNU equivalent).
Treat DW_AT_tail_call the same way to allow debuggers to follow cross-TU
tail calls.
Pre-patch debug session with a cross-TU tail call:
```
* frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
frame #1: 0x0000000100000f99 main`main at a.c:8:10 [opt]
```
Post-patch (note that the tail-calling frame, "helper", is visible):
```
* frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
frame #1: 0x0000000100000f80 main`helper [opt] [artificial]
frame #2: 0x0000000100000f99 main`main at a.c:8:10 [opt]
```
This was reverted in 5b9a072c because it attached declaration
subprograms to inlinable builtin calls, which interacted badly with the
MergeICmps pass. The fix is to not attach declarations to builtins.
rdar://46577651
Differential Revision: https://reviews.llvm.org/D69743
A call site parameter description of a memory operand needs to
unambiguously convey the size of the operand to prevent incorrect entry
value evaluation.
Thanks for David Stenberg for pointing this issue out!
Summary:
Assert in getFunctionLocalOffsetAfterInsn() fails when processing a call
MachineInstr inside a bundle and compiling with debug info. This is
because labels are added by DwarfDebug::beginInstruction() which is
called for each top-level MI by EmitFunctionBody()'s for-loop iteration
but constructCallSiteEntryDIEs() which calls
getFunctionLocalOffsetAfterInsn() iterates over all MIs.
This commit modifies constructCallSiteEntryDIEs() to get the associated
bundle MI for call MIs inside a bundle and use that to when calling
getFunctionLocalOffsetAfterInsn() and getLabelAfterInsn(). It also skips
loop iterations for bundle MIs since the loop statements are concerned
with debug info for each physical instructions and bundles represent a
group of instructions. It also fix the comment about PCAddr since the
code is getting the return address and not the call address.
Reviewers: dstenb, vsk, aprantl, djtodoro, dblaikie, NikolaPrica
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70293
This reapplies c0f6ad7d1f with an
additional fix in test/DebugInfo/X86/constant-loclist.ll, which had a
slightly different output on windows targets. The test now accounts for
this difference.
The original commit message follows.
Summary:
As discussed in D70081, this adds the ability to dump section
names/indices to the location list dumper. It does this by moving the
range specific logic from DWARFDie.cpp:dumpRanges into the
DWARFAddressRange class.
The trickiest part of this patch is the backflip in the meanings of the
two dump flags for the location list sections.
The dumping of "raw" location list data is now controlled by
"DisplayRawContents" flag. This frees up the "Verbose" flag to be used
to control whether we print the section index. Additionally, the
DisplayRawContents flag is set for section-based dumps whenever the
--verbose option is passed, but this is not done for the "inline" dumps.
Also note that the index dumping currently does not work for the DWARF
v5 location lists, as the parser does not fill out the appropriate
fields. This will be done in a separate patch.
Reviewers: dblaikie, probinson, JDevlieghere, SouraVX
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, arphaman, aprantl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70227
Summary:
As discussed in D70081, this adds the ability to dump section
names/indices to the location list dumper. It does this by moving the
range specific logic from DWARFDie.cpp:dumpRanges into the
DWARFAddressRange class.
The trickiest part of this patch is the backflip in the meanings of the
two dump flags for the location list sections.
The dumping of "raw" location list data is now controlled by
"DisplayRawContents" flag. This frees up the "Verbose" flag to be used
to control whether we print the section index. Additionally, the
DisplayRawContents flag is set for section-based dumps whenever the
--verbose option is passed, but this is not done for the "inline" dumps.
Also note that the index dumping currently does not work for the DWARF
v5 location lists, as the parser does not fill out the appropriate
fields. This will be done in a separate patch.
Reviewers: dblaikie, probinson, JDevlieghere, SouraVX
Subscribers: sdardis, hiraditya, jrtc27, atanasyan, arphaman, aprantl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70227
This patch, adds support for DW_AT_alignment[DWARF5] attribute, to be emitted with typdef DIE.
When explicit alignment is specified.
Patch by Awanish Pandey <Awanish.Pandey@amd.com>
Reviewers: aprantl, dblaikie, jini.susan.george, SouraVX, alok,
deadalinx
Differential Revision: https://reviews.llvm.org/D70111
Summary:
This adds a visitLocationList function to the DWARF v4 location lists,
similar to what already exists for DWARF v5. It follows the approach
outlined in previous patches (D69672), where the parsed form is always
stored in the DWARF v5 format, which makes it easier for generic code to
be built on top of that. v4 location lists are "upgraded" during
parsing, and then this upgrade is undone while dumping.
Both "inline" and section-based dumping is rewritten to reuse the
existing "generic" location list dumper. This means that the output
format is consistent for all location lists (the only thing one needs to
implement is the function which prints the "raw" form of a location
list), and that debug_loc dumping correctly processes base address
selection entries, etc.
The previous existing debug_loc functionality (e.g.,
parseOneLocationList) is rewritten on top of the new API, but it is not
removed as there is still code which uses them. This will be done in
follow-up patches, after I build the API to access the "interpreted"
location lists in a generic way (as that is what those users really
want).
Reviewers: dblaikie, probinson, JDevlieghere, aprantl, SouraVX
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69847
Allow call site paramter descriptions to reference spill slots. Spill
slots are not visible to high-level LLVM IR, so they can safely be
referenced during entry value evaluation (as they cannot be clobbered by
some other function).
This gives a 5% increase in the number of call site parameter DIEs in an
LTO x86_64 build of the xnu kernel.
This reverts commit eb4c98ca3d (
[DebugInfo] Exclude memory location values as parameter entry values),
effectively reintroducing the portion of D60716 which dealt with memory
locations (authored by Djordje, Nikola, Ananth, and Ivan).
This partially addresses llvm.org/PR43343. However, not all memory
operands forwarded to callees live in spill slots. In the xnu build, it
may be possible to use an escape analysis to increase the number of call
site parameter by another 15% (more details in PR43343).
Differential Revision: https://reviews.llvm.org/D70254
Summary: Removes CFI CFA directives that could incorrectly propagate
beyond the basic block they were inteded for. Specifically it removes
the epilogue CFI directives. See the branch_and_tail_call test for an
example of the issue. Should fix the stack unwinding issues caused by
the incorrect directives.
Reviewers: asb, lenary, shiva0217
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69723
Summary:
This removes the use of zero as a base address in section-based dumping.
Although this will often be true for (unlinked) object files with a
single compile unit, it is not true in general. This means that
section-based dumping will not be able to resolve entries referencing
the base address (DW_LLE_offset_pair) -- it wasn't able to do that
correctly before either, but now it will be more explicit about it. One
exception to that is if the location list contains an explicit
DW_LLE_base_address entry -- in this case the dumper will pick it up,
and resolve subsequent entries normally.
The patch also removes the fallback to zero in the "inline" dumping in
case the compile unit does not contain a base address.
Reviewers: dblaikie, probinson, JDevlieghere, aprantl, SouraVX
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70115
Summary:
Entry values are considered for parameters that have register-described
DBG_VALUEs in the entry block (along with other conditions).
If a parameter's value has been propagated from the caller to the
callee, then the parameter's DBG_VALUE in the entry block may be
described using a register defined by some instruction, and entry values
should not be emitted for the parameter, which can currently occur.
One such case was seen in the attached test case, in which the second
parameter, which is described by a redefinition of the first parameter's
register, would incorrectly get an entry value using the first
parameter's register. This commit intends to solve such cases by keeping
track of register defines, and ignoring DBG_VALUEs in the entry block
that are described by such registers.
In a RelWithDebInfo build of clang-8, the average size of the set was
27, and in a RelWithDebInfo+ASan build it was 30.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: djtodoro, vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D69889
Summary:
This patch extracts the logic for computing the "absolute" locations,
which was partially present in the debug_loclists dumper, completes it,
and moves it into a separate function. This makes it possible to later
reuse the same logic for uses other than dumping.
The dumper is changed to reuse the location list interpreter, and its
format is changed somewhat. In "verbose" mode it prints the "raw" value
of a location list, the interpreted location (if available) and the
expression itself. In non-verbose mode it prints only one of the
location forms: it prefers the interpreted form, but falls back to the
"raw" format if interpretation is not possible (for instance, because we
were not given a base address, or the resolution of indirect addresses
failed).
This patch also undos some of the changes made in D69672, namely the
part about making all functions static. The main reason for this is that
I learned that the original approach (dumping only fully resolved
locations) meant that it was impossible to rewrite one of the existing
tests. To make that possible (and make the "inline location" dump work
in more cases), I now reuse the same dumping mechanism as is used for
section-based dumping. As this required having more objects know about
the various location lists classes, it seemed like a good idea to create
an interface abstracting the difference between them.
Therefore, I now create a DWARFLocationTable class, which will serve as
a base class for the location list classes. DWARFDebugLoclists is made
to inherit from that. DWARFDebugLoc will follow.
Another positive effect of this change is that section-based dumping
code will not need to use templates (as originally) envisioned, and that
the argument lists of the dumping functions become shorter.
Reviewers: dblaikie, probinson, JDevlieghere, aprantl, SouraVX
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70081
This was arbitrarily appearing in only the last section emitted - which
made tests more sensitive than they needed to be (removing the last
section - like the macinfo section change that's coming after this)
would, surprisingly, move the blank line to the previous section.
The macinfo support was broken for LTO situations, by terminating
macinfo lists only once - multiple macinfo contributions were correctly
labeled, but they all continued/flowed into later contributions until
only one terminator appeared at the end of the section.
Correctly terminate each contribution & fix the parsing to handle this
situation too. The parsing fix is also necessary for dumping linked
binaries - the previous code would stop at the end of the first
contribution - missing all later contributions in a linked binary.
It'd be nice to improve the dumping to print the offsets of each
contribution so it'd be easier to know which CU AT_macro_info refers to
which macinfo contribution.
This triggered asserts in the Chromium build, see https://crbug.com/1022729 for
details and reproducer.
> Without this change, when a nested tag type of any kind (enum, class,
> struct, union) is used as a variable type, it is emitted without
> emitting the parent type. In CodeView, parent types point to their inner
> types, and inner types do not point back to their parents. We already
> walk over all of the parent scopes to build the fully qualified name.
> This change simply requests their type indices as we go along to enusre
> they are all emitted.
>
> Fixes PR43905
>
> Reviewers: akhuang, amccarth
>
> Differential Revision: https://reviews.llvm.org/D69924
Without this change, when a nested tag type of any kind (enum, class,
struct, union) is used as a variable type, it is emitted without
emitting the parent type. In CodeView, parent types point to their inner
types, and inner types do not point back to their parents. We already
walk over all of the parent scopes to build the fully qualified name.
This change simply requests their type indices as we go along to enusre
they are all emitted.
Fixes PR43905
Reviewers: akhuang, amccarth
Differential Revision: https://reviews.llvm.org/D69924
This caused Chromium builds to fail with "inlinable function call in a function
with debug info must have a !dbg location" errors. See
https://bugs.chromium.org/p/chromium/issues/detail?id=1022296#c1 for a
reproducer.
> Currently, clang emits subprograms for declared functions when the
> target debugger or DWARF standard is known to support entry values
> (DW_OP_entry_value & the GNU equivalent).
>
> Treat DW_AT_tail_call the same way to allow debuggers to follow cross-TU
> tail calls.
>
> Pre-patch debug session with a cross-TU tail call:
>
> ```
> * frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
> frame #1: 0x0000000100000f99 main`main at a.c:8:10 [opt]
> ```
>
> Post-patch (note that the tail-calling frame, "helper", is visible):
>
> ```
> * frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
> frame #1: 0x0000000100000f80 main`helper [opt] [artificial]
> frame #2: 0x0000000100000f99 main`main at a.c:8:10 [opt]
> ```
>
> rdar://46577651
>
> Differential Revision: https://reviews.llvm.org/D69743
Summary:
This patch stems from the discussion D68270 (including some offline
talks). The idea is to provide an "incremental" api for parsing location
lists, which will avoid caching or materializing parsed data. An
additional goal is to provide a high level location list api, which
abstracts the differences between different encoding schemes, and can be
used by users which don't care about those (such as LLDB).
This patch implements the first part. It implements a call-back based
"visitLocationList" api. This function parses a single location list,
calling a user-specified callback for each entry. This is going to be
the base api, which other location list functions (right now, just the
dumping code) are going to be based on.
Future patches will do something similar for the v4 location lists, and
add a mechanism to translate raw entries into concrete address ranges.
Reviewers: dblaikie, probinson, JDevlieghere, aprantl, SouraVX
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D69672
Currently, clang emits subprograms for declared functions when the
target debugger or DWARF standard is known to support entry values
(DW_OP_entry_value & the GNU equivalent).
Treat DW_AT_tail_call the same way to allow debuggers to follow cross-TU
tail calls.
Pre-patch debug session with a cross-TU tail call:
```
* frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
frame #1: 0x0000000100000f99 main`main at a.c:8:10 [opt]
```
Post-patch (note that the tail-calling frame, "helper", is visible):
```
* frame #0: 0x0000000100000fa4 main`target at b.c:4:3 [opt]
frame #1: 0x0000000100000f80 main`helper [opt] [artificial]
frame #2: 0x0000000100000f99 main`main at a.c:8:10 [opt]
```
rdar://46577651
Differential Revision: https://reviews.llvm.org/D69743
This reverts commit f5e1b718a6.
PR43855 reports a performance regression with commit ee50590e. This commit
depends on the faulty one, so has to come out too.
From SelectionDAGs point of view, debug variable locations specified with
dbg.declare and dbg.addr are indirect -- they specify the address of
something. But calling conventions might mean that a Value is placed on
the stack somewhere, and this too is indirection. Previously this was
mixed up in the "IsIndirect" field of DBG_VALUE insts; this patch
separates them by encoding the indirection in a DIExpression.
If we have a dbg.declare or dbg.addr, then the expression produces an
address that then becomes a DWARF memory location. We can represent
this by putting a DW_OP_deref on the _end_ of the expression. If a Value
has been placed on the stack, then we need to put a DW_OP_deref on the
_start_ of the expression, to load the Value from the stack and have
the rest of the expression operate on it.
Differential Revision: https://reviews.llvm.org/D69028
This is a follow-up to D67448.
Split live intervals with multiple dead defs during the initial
execution of the live interval analysis, but do it outside of the
function createAndComputeVirtRegInterval.
Differential Revision: https://reviews.llvm.org/D68666
Extend the describeLoadedValue() with support for target specific ARM and
AArch64 instructions interpretation. The patch provides specialization for
ADD and SUB operations that include a register and an immediate/offset
operand. Some of the instructions can operate with global string addresses
or constant pool indexes but such cases are omitted since we currently lack
flexible support for processing such operands at DWARF production stage.
Patch by Nikola Prica
Differential Revision: https://reviews.llvm.org/D67556
This patch adds support for deleted C++ special member functions in
clang and llvm. Also added Defaulted member encodings for future
support for defaulted member functions.
Patch by Sourabh Singh Tomar!
Differential Revision: https://reviews.llvm.org/D69215
llvm/test/DebugInfo/MIR/X86/live-debug-values-reg-copy.mir failed with
EXPENSIVE_CHECKS enabled, causing the patch to be reverted in
rG2c496bb5309c972d59b11f05aee4782ddc087e71.
This patch relands the patch with a proper fix to the
live-debug-values-reg-copy.mir tests, by ensuring the MIR encodes the
callee-saves correctly so that the CalleeSaved info is taken from MIR
directly, rather than letting it be recalculated by the PEI pass. I've
done this by running `llc -stop-before=prologepilog` on the LLVM
IR as captured in the test files, adding the extra MOV instructions
that were manually added in the original test file, then running `llc
-run-pass=prologepilog` and finally re-added the comments for the MOV
instructions.
In the Pre-RA machine sinker, previously we were relying on all DBG_VALUEs
being immediately after the instruction that defined their operands. This
isn't a valid assumption, as a variable location change doesn't
necessarily correspond to where the value is computed. In this patch, we
collect DBG_VALUEs that might need sinking as we walk through a block,
and sink all of them if their defining instruction is sunk.
This patch adds some copy propagation too, so that if we sink a copy inst,
the now non-dominated paths can use the copy source for the variable
location.
Differential Revision: https://reviews.llvm.org/D58386
When we sink DBG_VALUEs between blocks, we simply move the DBG_VALUE
instruction to below the sunk instruction. However, we should also mark
the variable as being undef at the original location, to terminate any
earlier variable location. This patch does that -- plus, if the
instruction being sunk is a copy, it attempts to propagate the copy
through the DBG_VALUE, replacing the destination with the source.
Differential Revision: https://reviews.llvm.org/D58238
Summary:
The default implementation of the describeLoadedValue() hook uses the
MoveImm property to determine if an instruction moves an immediate. If
an instruction has that property the function returns the second
operand, assuming that that is the immediate value the instruction
moves. As far as I can tell, the MoveImm property does not imply that
the second operand is the immediate value, nor that any other operand
necessarily holds the immediate value; it just means that the
instruction moves some immediate value.
One example where the second operand is not the immediate is SystemZ's
LZER instruction, which moves a zero immediate implicitly: $f0S = LZER.
That case triggered an out-of-bound assertion when getting the operand.
I have added a test case for that instruction.
Another example is ARM's MVN instruction, which holds the logical
bitwise NOT'd value of the immediate that is moved. For the following
reproducer:
extern void foo(int);
int main() { foo(-11); }
an incorrect call site value would be emitted:
$ clang --target=arm foo.c -O1 -g -Xclang -femit-debug-entry-values \
-c -o - | ./build/bin/llvm-dwarfdump - | \
grep -A2 call_site_parameter
0x00000058: DW_TAG_GNU_call_site_parameter
DW_AT_location (DW_OP_reg0 R0)
DW_AT_GNU_call_site_value (DW_OP_lit10)
Another example is the A2_combineii instruction on Hexagon which moves
two immediates to a super-register: $d0 = A2_combineii 20, 10.
Perhaps these are rare exceptions, and most MoveImm instructions hold
the immediate in the second operand, but in my opinion the default
implementation of the hook should only describe values that it can, by
some contract, guarantee are safe to describe, rather than leaving it up
to the targets to override the exceptions, as that can silently result
in incorrect call site values.
This patch adds X86's relevant move immediate instructions to the
target's hook implementation, so this commit should be a NFC for that
target. We need to do the same for ARM and AArch64.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: vsk
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D69109
Commit message from D66935:
This patch fixes a bug exposed by D65653 where a subsequent invocation
of `determineCalleeSaves` ends up with a different size for the callee
save area, leading to different frame-offsets in debug information.
In the invocation by PEI, `determineCalleeSaves` tries to determine
whether it needs to spill an extra callee-saved register to get an
emergency spill slot. To do this, it calls 'estimateStackSize' and
manually adds the size of the callee-saves to this. PEI then allocates
the spill objects for the callee saves and the remaining frame layout
is calculated accordingly.
A second invocation in LiveDebugValues causes estimateStackSize to return
the size of the stack frame including the callee-saves. Given that the
size of the callee-saves is added to this, these callee-saves are counted
twice, which leads `determineCalleeSaves` to believe the stack has
become big enough to require spilling an extra callee-save as emergency
spillslot. It then updates CalleeSavedStackSize with a larger value.
Since CalleeSavedStackSize is used in the calculation of the frame
offset in getFrameIndexReference, this leads to incorrect offsets for
variables/locals when this information is recalculated after PEI.
This patch fixes the lldb unit tests in `functionalities/thread/concurrent_events/*`
Changes after D66935:
Ensures AArch64FunctionInfo::getCalleeSavedStackSize does not return
the uninitialized CalleeSavedStackSize when running `llc` on a specific
pass where the MIR code has already been expected to have gone through PEI.
Instead, getCalleeSavedStackSize (when passed the MachineFrameInfo) will try
to recalculate the CalleeSavedStackSize from the CalleeSavedInfo. In debug
mode, the compiler will assert the recalculated size equals the cached
size as calculated through a call to determineCalleeSaves.
This fixes two tests:
test/DebugInfo/AArch64/asan-stack-vars.mir
test/DebugInfo/AArch64/compiler-gen-bbs-livedebugvalues.mir
that otherwise fail when compiled using msan.
Reviewed By: omjavaid, efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68783
llvm-svn: 375425
Summary:
Internally in LLVM's metadata we use DW_OP_entry_value operations with
the same semantics as DWARF; that is, its operand specifies the number
of bytes that the entry value covers.
At the time of emitting entry values we don't know the emitted size of
the DWARF expression that the entry value will cover. Currently the size
is hardcoded to 1 in DIExpression, and other values causes the verifier
to fail. As the size is 1, that effectively means that we can only have
valid entry values for registers that can be encoded in one byte, which
are the registers with DWARF numbers 0 to 31 (as they can be encoded as
single-byte DW_OP_reg0..DW_OP_reg31 rather than a multi-byte
DW_OP_regx). It is a bit confusing, but it seems like llvm-dwarfdump
will print an operation "correctly", even if the byte size is less than
that, which may make it seem that we emit correct DWARF for registers
with DWARF numbers > 31. If you instead use readelf for such cases, it
will interpret the number of specified bytes as a DWARF expression. This
seems like a limitation in llvm-dwarfdump.
As suggested in D66746, a way forward would be to add an internal
variant of DW_OP_entry_value, DW_OP_LLVM_entry_value, whose operand
instead specifies the number of operations that the entry value covers,
and we then translate that into the byte size at the time of emission.
In this patch that internal operation is added. This patch keeps the
limitation that a entry value can only be applied to simple register
locations, but it will fix the issue with the size operand being
incorrect for DWARF numbers > 31.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: aprantl
Subscribers: jyknight, fedor.sergeev, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67492
llvm-svn: 374881
This patch kills off a significant user of the "IsIndirect" field of
DBG_VALUE machine insts. Brought up in in PR41675, IsIndirect is
techncally redundant as it can be expressed by the DIExpression of a
DBG_VALUE inst, and it isn't helpful to have two ways of expressing
things.
Rather than setting IsIndirect, have DBG_VALUE creators add an extra deref
to the insts DIExpression. There should now be no appearences of
IsIndirect=True from isel down to LiveDebugVariables / VirtRegRewriter,
which is ensured by an assertion in LDVImpl::handleDebugValue. This means
we also get to delete the IsIndirect handling in LiveDebugVariables. Tests
can be upgraded by for example swapping the following IsIndirect=True
DBG_VALUE:
DBG_VALUE $somereg, 0, !123, !DIExpression(DW_OP_foo)
With one where the indirection is in the DIExpression, by _appending_
a deref:
DBG_VALUE $somereg, $noreg, !123, !DIExpression(DW_OP_foo, DW_OP_deref)
Which both mean the same thing.
Most of the test changes in this patch are updates of that form; also some
changes in how the textual assembly printer handles these insts.
Differential Revision: https://reviews.llvm.org/D68945
llvm-svn: 374877
Summary:
This addresses a bug in collectCallSiteParameters() where call site
immediates would be truncated from int64_t to unsigned.
This fixes PR43525.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: aprantl
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D68869
llvm-svn: 374770
Unify the range and loc emission (for both DWARFv4 and DWARFv5 style lists) and take advantage of that unification to use strategic base addresses for loclists.
Differential Revision: https://reviews.llvm.org/D68620
llvm-svn: 374600
Summary:
Visual Studio doesn't like it while stepping. It kicks you out of the
source view of the file being stepped through and tries to fall back to
the disassembly view.
Fixes PR43530
The fix is incomplete, because it's possible to have a basic block with
no source locations at all. In this case, we don't emit a .cv_loc, but
that will result in wrong stepping behavior in the debugger if the
layout predecessor of the location-less BB has an unrelated source
location. We could try harder to find a valid location that dominates or
post-dominates the current BB, but in general it's a dataflow problem,
and one still might not exist. I left a FIXME about this.
As an alternative, we might want to consider having the middle-end check
if its emitting codeview and get it to stop using line zero.
Reviewers: akhuang
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68747
llvm-svn: 374267
Summary:
This is necessary and sufficient to get simple cases of multiple
return working with multivalue enabled. More complex cases will
require block and loop signatures to be generalized to potentially be
type indices as well.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68684
llvm-svn: 374235
During the If-Converter optimization pay attention when copying or
deleting call instructions in order to keep call site information in
valid state.
Reviewers: aprantl, vsk, efriedma
Reviewed By: vsk, efriedma
Differential Revision: https://reviews.llvm.org/D66955
llvm-svn: 374068
Support for tracking registers that forward function parameters into the
following function frame. For now we only support cases when parameter
is forwarded through single register.
Reviewers: aprantl, vsk, t.p.northover
Reviewed By: vsk
Differential Revision: https://reviews.llvm.org/D66953
llvm-svn: 374033
Rather than having a mixture of location-state shared between DBG_VALUEs
and VarLoc objects in LiveDebugValues, this patch makes VarLoc the
master record of variable locations. The refactoring means that the
transfer of locations from one place to another is always a performed by
an operation on an existing VarLoc, that produces another transferred
VarLoc. DBG_VALUEs are only created at the end of LiveDebugValues, once
all locations are known. As a plus, there is now only one method where
DBG_VALUEs can be created.
The test case added covers a circumstance that is now impossible to
express in LiveDebugValues: if an already-indirect DBG_VALUE is spilt,
previously it would have been restored-from-spill as a direct DBG_VALUE.
We now don't lose this information along the way, as VarLocs always
refer back to the "original" non-transfer DBG_VALUE, and we can always
work out whether a location was "originally" indirect.
Differential Revision: https://reviews.llvm.org/D67398
llvm-svn: 373727
When transfering variable locations from one place to another,
LiveDebugValues immediately creates a DBG_VALUE representing that
transfer. This causes trouble if the variable location should
subsequently be invalidated by a loop back-edge, such as in the added
test case: the transfer DBG_VALUE from a now-invalid location is used
as proof that the variable location is correct. This is effectively a
self-fulfilling prophesy.
To avoid this, defer the insertion of transfer DBG_VALUEs until after
analysis has completed. Some of those transfers are still sketchy, but
we don't propagate them into other blocks now.
Differential Revision: https://reviews.llvm.org/D67393
llvm-svn: 373720
Abandon describing of loaded values due to safety concerns. Loaded
values are described as derefed memory location at caller point.
At callee we can unintentionally change that memory location which
would lead to different entry being printed value before and after
the memory location clobbering. This problem is described in
llvm.org/PR43343.
Patch by Nikola Prica
Differential Revision: https://reviews.llvm.org/D67717
llvm-svn: 373089
Summary:
The functions different in two ways:
- getLLVMRegNum could return both "eh" and "other" dwarf register
numbers, while getLLVMRegNumFromEH only returned the "eh" number.
- getLLVMRegNum asserted if the register was not found, while the second
function returned -1.
The second distinction was pretty important, but it was very hard to
infer that from the function name. Aditionally, for the use case of
dumping dwarf expressions, we needed a function which can work with both
kinds of number, but does not assert.
This patch solves both of these issues by merging the two functions into
one, returning an Optional<unsigned> value. While the same thing could
be achieved by adding an "IsEH" argument to the (renamed)
getLLVMRegNumFromEH function, it seemed better to avoid the confusion of
two functions and put the choice of asserting into the hands of the
caller -- if he checks the Optional value, he can safely process
"untrusted" input, and if he blindly dereferences the Optional, he gets
the assertion.
I've updated all call sites to the new API, choosing between the two
options according to the function they were calling originally, except
that I've updated the usage in DWARFExpression.cpp to use the "safe"
method instead, and added a test case which would have previously
triggered an assertion failure when processing (incorrect?) dwarf
expressions.
Reviewers: dsanders, arsenm, JDevlieghere
Subscribers: wdng, aprantl, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67154
llvm-svn: 372710
DIFlagBlockByRefStruct is an unused DIFlag that originally was used by
clang to express (Objective-)C block captures in debug info. For the
last year Clang has been emitting complex DIExpressions to describe
block captures instead, which makes all the code supporting this flag
redundant.
This patch removes the flag and all supporting "dead" code, so we can
reuse the bit for something else in the future.
Since this only affects debug info generated by Clang with the block
extension this mostly affects Apple platforms and I don't have any
bitcode compatibility concerns for removing this. The Verifier will
reject debug info that uses the bit and thus degrade gracefully when
LTO'ing older bitcode with a newer compiler.
rdar://problem/44304813
Differential Revision: https://reviews.llvm.org/D67453
llvm-svn: 372272
This patch fixes a bug exposed by D65653 where a subsequent invocation
of `determineCalleeSaves` ends up with a different size for the callee
save area, leading to different frame-offsets in debug information.
In the invocation by PEI, `determineCalleeSaves` tries to determine
whether it needs to spill an extra callee-saved register to get an
emergency spill slot. To do this, it calls 'estimateStackSize' and
manually adds the size of the callee-saves to this. PEI then allocates
the spill objects for the callee saves and the remaining frame layout
is calculated accordingly.
A second invocation in LiveDebugValues causes estimateStackSize to return
the size of the stack frame including the callee-saves. Given that the
size of the callee-saves is added to this, these callee-saves are counted
twice, which leads `determineCalleeSaves` to believe the stack has
become big enough to require spilling an extra callee-save as emergency
spillslot. It then updates CalleeSavedStackSize with a larger value.
Since CalleeSavedStackSize is used in the calculation of the frame
offset in getFrameIndexReference, this leads to incorrect offsets for
variables/locals when this information is recalculated after PEI.
Reviewers: omjavaid, eli.friedman, thegameg, efriedma
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D66935
llvm-svn: 372204
Emit debug entry values using standard DWARF5 opcodes when the debugger
tuning is set to lldb.
Differential Revision: https://reviews.llvm.org/D67410
llvm-svn: 371666
Summary:
This catches malformed mir files which specify alignment as log2 instead of pow2.
See https://reviews.llvm.org/D65945 for reference,
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: MatzeB, qcolombet, dschuff, arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Petar.Avramovic, asbirlea, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67433
llvm-svn: 371608
This is an alternative to D66980, which was reverted. Instead of
inserting a pseudo instruction that optionally expands to nothing, add a
pass that inserts int3 when appropriate after basic block layout.
Reviewers: hans
Differential Revision: https://reviews.llvm.org/D67201
llvm-svn: 371466
Summary:
Add zero-materializing XORs to X86's describeLoadedValue() hook in order
to produce call site values.
I have had to change the defs logic in collectCallSiteParameters() a bit
to be able to describe the XORs. The XORs implicitly define $eflags,
which would cause them to never be considered, due to a guard condition
that I->getNumDefs() is one. I have changed that condition so that we
now only consider instructions where a forwarded register overlaps with
the instruction's single explicit define. We still need to collect the implicit
defines of other forwarded registers to remove them from the work list.
I'm not sure how to move towards supporting instructions with multiple
explicit defines, cases where forwarded register are implicitly defined,
and/or cases where an instruction produces values for multiple forwarded
registers. Perhaps the describeLoadedValue() hook should take a register
argument, and we then leave it up to the hook to describe the loaded
value in that register? I have not yet encountered a situation where
that would be necessary though.
Reviewers: aprantl, vsk, djtodoro, NikolaPrica
Reviewed By: vsk
Subscribers: ychen, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67225
llvm-svn: 371333
Summary:
The value operand in DW_OP_plus_uconst/DW_OP_constu value can be
large (it uses uint64_t as representation internally in LLVM).
This means that in the uint64_t to int conversions, previously done
by DwarfExpression::addMachineRegExpression, could lose information.
Also, the negation done in "-Offset" was undefined behavior in case
Offset was exactly INT_MIN.
To avoid the above problems, we now avoid transformation like
[Reg, DW_OP_plus_uconst, Offset] --> [DW_OP_breg, Offset]
and
[Reg, DW_OP_constu, Offset, DW_OP_plus] --> [DW_OP_breg, Offset]
when Offset > INT_MAX.
And we avoid to transform
[Reg, DW_OP_constu, Offset, DW_OP_minus] --> [DW_OP_breg,-Offset]
when Offset > INT_MAX+1.
The patch also adjusts DwarfCompileUnit::constructVariableDIEImpl
to make sure that "DW_OP_constu, Offset, DW_OP_minus" is used
instead of "DW_OP_plus_uconst, Offset" when creating DIExpressions
with negative frame index offsets.
Notice that this might just be the tip of the iceberg. There
are lots of fishy handling related to these constants. I think both
DIExpression::appendOffset and DIExpression::extractIfOffset may
trigger undefined behavior for certain values.
Reviewers: sdesmalen, rnk, JDevlieghere
Reviewed By: JDevlieghere
Subscribers: jholewinski, aprantl, hiraditya, ychen, uabelho, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D67263
llvm-svn: 371304
This currently triggers undefined behavior if executed with an
ubsan build. It is just a precommit of the test case to show that
we got a problem.
Fix is proposed in https://reviews.llvm.org/D67263 and plan is to
commit the fix directly after this patch.
llvm-svn: 371303
If a stack spill location is overwritten by another spill instruction,
any variable locations pointing at that slot should be terminated. We
cannot rely on spills always being restored to registers or variable
locations being moved by a DBG_VALUE: the register allocator is entitled
to spill a value and then forget about it when it goes out of liveness.
To address this, scan for memory writes to spill locations, even those we
don't consider to be normal "spills". isSpillInstruction and
isLocationSpill distinguish the two now. After identifying spill
overwrites, terminate the open range, and insert a $noreg DBG_VALUE for
that variable.
Differential Revision: https://reviews.llvm.org/D66941
llvm-svn: 371193
Summary:
This patch renames functions that takes or returns alignment as log2, this patch will help with the transition to llvm::Align.
The renaming makes it explicit that we deal with log(alignment) instead of a power of two alignment.
A few renames uncovered dubious assignments:
- `MirParser`/`MirPrinter` was expecting powers of two but `MachineFunction` and `MachineBasicBlock` were using deal with log2(align). This patch fixes it and updates the documentation.
- `MachineBlockPlacement` exposes two flags (`align-all-blocks` and `align-all-nofallthru-blocks`) supposedly interpreted as power of two alignments, internally these values are interpreted as log2(align). This patch updates the documentation,
- `MachineFunctionexposes` exposes `align-all-functions` also interpreted as power of two alignment, internally this value is interpreted as log2(align). This patch updates the documentation,
Reviewers: lattner, thegameg, courbet
Subscribers: dschuff, arsenm, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, javed.absar, hiraditya, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, dexonsmith, PkmX, jocewei, jsji, Jim, s.egerton, llvm-commits, courbet
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D65945
llvm-svn: 371045
As DW_AT_rnglists_base points after the header and headers have
different sizes for DWARF32 and DWARF64, we have to use the format
of the CU to adjust the offset correctly in order to extract
the referenced range list table.
The patch also changes the type of RangeSectionBase because in DWARF64
it is 8-bytes long.
Differential Revision: https://reviews.llvm.org/D67098
llvm-svn: 371016
SROA pass processes debug info incorrecly if applied twice.
Specifically, after SROA works first time, instcombine converts dbg.declare
intrinsics into dbg.value. Inlining creates new opportunities for SROA,
so it is called again. This time it does not handle correctly previously
inserted dbg.value intrinsics.
Differential Revision: https://reviews.llvm.org/D64595
llvm-svn: 370906
the test is building a 64-bit executable, so the addresses should be
64-bit too. The test was still passing even with smaller address size,
but it was hitting the "unexpected end of data" error sooner than it
should.
llvm-svn: 370882
When comparing variable locations, LiveDebugValues currently considers only
the machine location, ignoring any DIExpression applied to it. This is a
problem because that DIExpression can do pretty much anything to the machine
location, for example dereferencing it.
This patch adds DIExpressions to that comparison; now variables based on the
same register/memory-location but with different expressions will compare
differently, and be dropped if we attempt to merge them between blocks. This
reduces variable coverage-range a little, but only because we were producing
broken locations.
Differential Revision: https://reviews.llvm.org/D66942
llvm-svn: 370877
Summary:
While fixing the handling of some error cases, r370363 introduced new
problems -- assertion failures due to unchecked errors (my excuse is that a very
early version of that patch used Optional<T> instead of Expected).
This patch adds proper handling of parsing errors encountered when
dumping location lists from inside DWARF DIEs, and adds a bunch of
additional tests.
I reorder the arguments of the location list dumping functions to make
them consistent, and also be able to dump the two kinds of location
lists generically.
Reviewers: JDevlieghere, dblaikie, probinson
Subscribers: aprantl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67102
llvm-svn: 370868
This reverts r370525 (git commit 0bb1630685)
Also reverts r370543 (git commit 185ddc08ee)
The approach I took only works for functions marked `noreturn`. In
general, a call that is not known to be noreturn may be followed by
unreachable for other reasons. For example, there could be multiple call
sites to a function that throws sometimes, and at some call sites, it is
known to always throw, so it is followed by unreachable. We need to
insert an `int3` in these cases to pacify the Windows unwinder.
I think this probably deserves its own standalone, Win64-only fixup pass
that runs after block placement. Implementing that will take some time,
so let's revert to TrapUnreachable in the mean time.
llvm-svn: 370829
The missing line added by this patch ensures that only spilt variable
locations are candidates for being restored from the stack. Otherwise,
register or constant-value information can be interpreted as a spill
location, through a union.
The added regression test replicates a scenario where this occurs: the
stack load from [rsp] causes the register-location DBG_VALUE to be
"restored" to rsi, when it should be left alone. See PR43058 for details.
Un x-fail a test that was suffering from this from a previous patch.
Differential Revision: https://reviews.llvm.org/D66895
llvm-svn: 370648
Users have complained llvm.trap produce two ud2 instructions on Win64,
one for the trap, and one for unreachable. This change fixes that.
TrapUnreachable was added and enabled for Win64 in r206684 (April 2014)
to avoid poorly understood issues with the Windows unwinder.
There seem to be two major things in play:
- the unwinder
- C++ EH, _CxxFrameHandler3 & co
The unwinder disassembles forward from the return address to scan for
epilogues. Inserting a ud2 had the effect of stopping the unwinder, and
ensuring that it ran the EH personality function for the current frame.
However, it's not clear what the unwinder does when the return address
happens to be the last address of one function and the first address of
the next function.
The Visual C++ EH personality, _CxxFrameHandler3, needs to figure out
what the current EH state number is. It does this by consulting the
ip2state table, which maps from PC to state number. This seems to go
wrong when the return address is the last PC of the function or catch
funclet.
I'm not sure precisely which system is involved here, but in order to
address these real or hypothetical problems, I believe it is enough to
insert int3 after a call site if it would otherwise be the last
instruction in a function or funclet. I was able to reproduce some
similar problems locally by arranging for a noreturn call to appear at
the end of a catch block immediately before an unrelated function, and I
confirmed that the problems go away when an extra trailing int3
instruction is added.
MSVC inserts int3 after every noreturn function call, but I believe it's
only necessary to do it if the call would be the last instruction. This
change inserts a pseudo instruction that expands to int3 if it is in the
last basic block of a function or funclet. I did what I could to run the
Microsoft compiler EH tests, and the ones I was able to run showed no
behavior difference before or after this change.
Differential Revision: https://reviews.llvm.org/D66980
llvm-svn: 370525
Summary:
Change LiveDebugValues so that it inserts entry values after the bundle
which contains the clobbering instruction. Previously it would insert
the debug value after the bundle head using insertAfter(), breaking the
bundle.
Reviewers: djtodoro, NikolaPrica, aprantl, vsk
Reviewed By: vsk
Subscribers: hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D66888
llvm-svn: 370448
Summary:
While examining this class for possible use in lldb, I noticed two
things:
- it spits out parsing errors directly to stderr
- the loclists parser can incorrectly return valid location lists when
parsing malformed (truncated) data
I improve the stderr situation by making the parseOneLocationList
functions return Expected<T>s. The errors are still dumped to stderr by
their callers, so this is only a partial fix, but it is enough for my
use case, as I intend to parse the locations lists one by one.
I fix the behavior in the truncated scenario by using the newly
introduced DataExtractor Cursor API.
I also add tests for handling the error cases, as they currently have no
coverage.
Reviewers: dblaikie, JDevlieghere, probinson
Subscribers: lldb-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63591
llvm-svn: 370363
The missing line added by this patch ensures that only spilt variable
locations are candidates for being restored from the stack. Otherwise,
register or constant-value information can be interpreted as a spill
location, through a union.
The added regression test replicates a scenario where this occurs: the
stack load from [rsp] causes the register-location DBG_VALUE to be
"restored" to rsi, when it should be left alone. See PR43058 for details.
Un x-fail a test that was suffering from this from a previous patch.
Differential Revision: https://reviews.llvm.org/D66895
llvm-svn: 370334
The "join" method in LiveDebugValues does not attempt to join unseen
predecessor blocks if their out-locations aren't yet initialized, instead
the block should be re-visited later to see if any locations have changed
validity. However, because the set of blocks were all being "process"'d
once before "join" saw them, that logic in "join" was actually ignoring
legitimate out-locations on the first pass through. This meant that some
invalidated locations were not removed from the head of loops, allowing
illegal locations to persist.
Fix this by removing the run of "process" before the main join/process loop
in ExtendRanges. Now the unseen predecessors that "join" skips truly are
uninitialized, and we come back to the block at a later time to re-run
"join", see the @baz function added.
This also fixes another fault where stack/register transfers in the entry
block (or any other before-any-loop-block) had their tranfers initially
ignored, and were then never revisited. The MIR test added tests for this
behaviour.
XFail a test that exposes another bug; a fix for this is coming in D66895.
Differential Revision: https://reviews.llvm.org/D66663
llvm-svn: 370328
This implements the DWARF 5 feature described in:
http://dwarfstd.org/ShowIssue.php?issue=141212.1
To support recognizing anonymous structs:
struct A {
struct { // Anonymous struct
int y;
};
} a
This patch adds support for the new flag in constructTypeDIE(...) and test to verify this change.
Differential Revision: https://reviews.llvm.org/D66605
llvm-svn: 369969
The test case used invalid source operands as input
to BTS64rr instructions (feeding register operands with
immediates). This patch changes those instruction into
using BTS64ri8 instead, which seems to better match the
operand types.
Fixes problems seen in https://reviews.llvm.org/D63973.
llvm-svn: 369866
LiveDebugValues gives variable locations to blocks, but it should also take
away. There are various circumstances where a variable location is known
until a loop backedge with a different location is detected. In those
circumstances, where there's no agreement on the variable location, it
should be undef / removed, otherwise we end up picking a location that's
valid on some loop iterations but not others.
However, LiveDebugValues doesn't currently do this, see the new testcase
attached. Without this patch, the location of !3 is assumed to be %bar
through the loop. Once it's added to the In-Locations list, it's never
removed, even though the later dbg.value(0... of !3 makes the location
un-knowable.
This patch checks during block-location-joining to see whether any
previously-present locations have been removed in a predecessor. If they
have, the live-ins have changed, and the block needs reprocessing.
Similarly, in transferTerminator, assign rather than |= the Out-Locations
after processing a block, as we may have deleted some previously valid
locations. This will mean that LiveDebugValues performs more propagation
-- but that's necessary for it being correct.
Differential Revision: https://reviews.llvm.org/D66599
llvm-svn: 369778
Patch https://reviews.llvm.org/D43256 introduced more aggressive loop layout optimization which depends on profile information. If profile information is not available, the statically estimated profile information(generated by BranchProbabilityInfo.cpp) is used. If user program doesn't behave as BranchProbabilityInfo.cpp expected, the layout may be worse.
To be conservative this patch restores the original layout algorithm in plain mode. But user can still try the aggressive layout optimization with -force-precise-rotation-cost=true.
Differential Revision: https://reviews.llvm.org/D65673
llvm-svn: 369664
LiveDebugValues propagates variable locations between blocks by creating
new DBG_VALUE insts in the successors, then interpreting them when it
passes back through the block at a later time. However, this flushes out
any extra information about the location that LiveDebugValues holds: for
example, connections between variable locations such as discussed in
D65368. And as reported in PR42772 this causes us to lose track of the
fact that a spill-location is actually a spill, not a register location.
This patch fixes that by deferring the creation of propagated DBG_VALUEs
until after propagation has completed: instead location propagation occurs
only by sharing location ID numbers between blocks.
Differential Revision: https://reviews.llvm.org/D66412
llvm-svn: 369508
Currently the machine instruction sinker identifies DBG_VALUE insts that
also need to sink by comparing register numbers. Unfortunately this isn't
safe, because (after register allocation) a DBG_VALUE may read a register
that aliases what's being sunk. To fix this, identify the DBG_VALUEs that
need to sink by recording & examining their register units. Register units
gives us the following guarantee:
"Two registers overlap if and only if they have a common register unit"
[MCRegisterInfo.h]
Thus we can always identify aliasing DBG_VALUEs if the set of register
units read by the DBG_VALUE, and the register units of the instruction
being sunk, intersect. (MachineSink already uses classes like
"LiveRegUnits" for determining sinking validity anyway).
The test added checks for super and subregister DBG_VALUE reads of a sunk
copy being sunk as well.
Differential Revision: https://reviews.llvm.org/D58191
llvm-svn: 369247
LiveDebugVariables can coalesce ranges of variable locations across
multiple basic blocks. However when it recreates DBG_VALUE instructions,
it has to recreate one DBG_VALUE per block, otherwise it doesn't
represent the pre-regalloc layout and variable assignments can go missing.
This feature works -- however while mucking around with LiveDebugVariables,
I commented the relevant code it out and no tests failed. Thus, here's a
test that checks LiveDebugVariables preserves DBG_VALUEs across block
boundaries.
Differential Revision: https://reviews.llvm.org/D66347
llvm-svn: 369243
In r369026 we disabled spill-recognition in LiveDebugValues for anything
that has a complex expression. This is because it's hard to recover the
complex expression once the spill location is baked into it.
This patch re-enables spill-recognition and slightly adjusts the DBG_VALUE
insts that LiveDebugValues tracks: instead of tracking the last DBG_VALUE
for a variable, it tracks the last _unspilt_ DBG_VALUE. The spill-restore
code is then able to access and copy the original complex expression; but
the rest of LiveDebugValues has to be aware of the slight semantic shift,
and produce a new spilt location if a spilt location is propagated between
blocks.
The test added produces an incorrect variable location (see FIXME), which
will be the subject of future work.
Differential Revision: https://reviews.llvm.org/D65368
llvm-svn: 369092
This patch avoids a crash caused by DW_OP_LLVM_fragments being dropped
from DIExpressions by LiveDebugValues spill-restore code. The appearance
of a previously unseen fragment configuration confuses LDV, as documented
in PR42773, and reproduced by the test function this patch adds (Crashes
on a x86_64 debug build).
To avoid this, on spill restore, we now use fragment information from the
spilt-location-expression.
In addition, when spilling, we now don't spill any DBG_VALUE with a complex
expression, as it can't be safely restored and will definitely lead to an
incorrect variable location. The discussion of this is in D65368.
Differential Revision: https://reviews.llvm.org/D66284
llvm-svn: 369026
Summary: There are places where a case that debug label scope has an extra lexical block file is not considered properly. The modified test won't pass without this patch.
Reviewers: aprantl, HsiangKai
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D66187
llvm-svn: 368891
An incorrect verification error revealed that the list of type tags was
incomplete. This patch adds the missing types by adding a tag kind to
the Dwarf.def file, which is used by the `isType` function.
A test was added for the original verification error.
Differential revision: https://reviews.llvm.org/D65914
llvm-svn: 368718
It caused assertions to fire when building Chromium:
lib/CodeGen/LiveDebugValues.cpp:331: bool
{anonymous}::LiveDebugValues::OpenRangesSet::empty() const: Assertion
`Vars.empty() == VarLocs.empty() && "open ranges are inconsistent"' failed.
See https://crbug.com/992871#c3 for how to reproduce.
> Patch https://reviews.llvm.org/D43256 introduced more aggressive loop layout optimization which depends on profile information. If profile information is not available, the statically estimated profile information(generated by BranchProbabilityInfo.cpp) is used. If user program doesn't behave as BranchProbabilityInfo.cpp expected, the layout may be worse.
>
> To be conservative this patch restores the original layout algorithm in plain mode. But user can still try the aggressive layout optimization with -force-precise-rotation-cost=true.
>
> Differential Revision: https://reviews.llvm.org/D65673
llvm-svn: 368579
Summary:
When eliminating an unreachable block we must remove any call site
information for calls residing in the block.
This was originally found on a downstream target, and the attached x86
test case was produced by hand-modifying some MIR.
Reviewers: aprantl, asowda, NikolaPrica, djtodoro, ivanbaev, vsk
Reviewed By: NikolaPrica, vsk
Subscribers: vsk, hiraditya, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D64500
llvm-svn: 368566
This isn't the most robust error handling API, but does allow clients to
opt-in to getting Errors they can handle. I suspect the long-term
solution would be to move away from the lazy unit parsing and have an
explicit step that parses the unit and then allows access to the other
APIs that require a parsed unit.
llvm-dwarfdump could be expanded to use this (or newer/better API) to
demonstrate the benefit of it - but for now lld will use this in a
follow-up cl which ensures lld can exit non-zero on errors like this (&
provide more descriptive diagnostics including which object file the
error came from).
(error access to later errors when parsing nested DIEs would be good too
- but, again, exposing that without it being a hassle for every consumer
may be tricky)
llvm-svn: 368377
Patch https://reviews.llvm.org/D43256 introduced more aggressive loop layout optimization which depends on profile information. If profile information is not available, the statically estimated profile information(generated by BranchProbabilityInfo.cpp) is used. If user program doesn't behave as BranchProbabilityInfo.cpp expected, the layout may be worse.
To be conservative this patch restores the original layout algorithm in plain mode. But user can still try the aggressive layout optimization with -force-precise-rotation-cost=true.
Differential Revision: https://reviews.llvm.org/D65673
llvm-svn: 368339
Prevent the LoadStoreOptimizer from pairing any load/store instructions with
instructions from the prologue/epilogue if the CFI information has encoded the
operations as separate instructions. This would otherwise lead to a mismatch
of the actual prologue size from the size as recorded in the Windows CFI.
Reviewers: efriedma, mstorsjo, ssijaric
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D65817
llvm-svn: 368164
In debug frame information, some fields, e.g., Length in CIE/FDE and
Offset in FDE are attributes to describe the structure of CIE/FDE. They
are not related to the relaxed code. However, these attributes are
symbol differences. So, in current design, these attributes will be
filled as zero and LLVM generates relocations for them.
We only need to generate relocations for symbols in executable sections.
So, if the symbols are not located in executable sections, we still
evaluate their values under relaxation.
Differential Revision: https://reviews.llvm.org/D61584
llvm-svn: 366531
It is necessary to generate fixups in .debug_frame or .eh_frame as
relaxation is enabled due to the address delta may be changed after
relaxation.
There is an opcode with 6-bits data in debug frame encoding. So, we
also need 6-bits fixup types.
Differential Revision: https://reviews.llvm.org/D58335
llvm-svn: 366524
It is necessary to generate fixups in .debug_frame or .eh_frame as
relaxation is enabled due to the address delta may be changed after
relaxation.
There is an opcode with 6-bits data in debug frame encoding. So, we
also need 6-bits fixup types.
Differential Revision: https://reviews.llvm.org/D58335
llvm-svn: 366442
Windows sees DW_AT_decl_file (".\dwarf-riscv-relocs.c") while Linux sees
DW_AT_decl_file ("./dwarf-riscv-relocs.c").
This fixes a failure introduced in rL366402.
llvm-svn: 366410
When code relaxation is enabled many RISC-V fixups are not resolved but
instead relocations are emitted. This happens even for DWARF debug
sections. Therefore, to properly support the parsing of DWARF debug info
we need to be able to resolve RISC-V relocations. This patch adds:
* Support for RISC-V relocations in RelocationResolver
* DWARF support for two relocations per object file offset
* DWARF changes to support relocations in more DIE fields
The two relocations per offset change is needed because some RISC-V
relocations (used for label differences) come in pairs.
Relocations can also be emitted for DWARF fields where relocations were
not yet evaluated. Adding relocation support for some of these fields is
essencial. On the other hand, LLVM currently emits RISC-V relocations
for fixups that could be safely evaluated, since they can never be
affected by code relaxations. This patch also adds relocation support
for the fields affected by those extraneous relocations (the DWARF unit
entry Length, and the DWARF debug line entry TotalLength and
PrologueLength), for testing purposes.
Differential Revision: https://reviews.llvm.org/D62062
Patch by Luís Marques.
llvm-svn: 366402
D64033 <https://reviews.llvm.org/D64033> added DW_AT_call_column for
inline sites. However, that change wasn't aware of "-gno-column-info".
To avoid adding column info when "-gno-column-info" is used, now
DW_AT_call_column is only added when we have non-zero column (when
"-gno-column-info" is used, column will be zero).
Patch by Wenlei He!
Differential Revision: https://reviews.llvm.org/D64784
llvm-svn: 366264
The column field is missing for all inline sites, currently it's always
zero. This changes populates DW_AT_call_column field for inline sites.
Test case modified to cover this change.
Patch by: Wenlei He
Differential revision: https://reviews.llvm.org/D64033
llvm-svn: 365945
- The test had extension .yaml, which lit doesn't execute in this
directory. Rename to .test to make it run, and move the yaml bits
into a dedicated file, like with all other tests in this dir.
- llvm-pdbdump got renamed to llvm-pdbutil long ago, update test.
- -dbi-module-info got renamed in r305032, update test for this too.
llvm-svn: 365514
Dump the DWARF information about call sites and call site parameters into
debug info sections.
The patch also provides an interface for the interpretation of instructions
that could load values of a call site parameters in order to generate DWARF
about the call site parameters.
([13/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D60716
llvm-svn: 365467
Emit replacements for clobbered parameters location if the parameter
has unmodified value throughout the funciton. This is basic scenario
where we can use the debug entry values.
([12/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D58042
llvm-svn: 365444
This patch addresses PR41675, where a stack-pointer variable is dereferenced
too many times by its location expression, presenting a value on the stack as
the pointer to the stack.
The difference between a stack *pointer* DBG_VALUE and one that refers to a
value on the stack, is currently the indirect flag. However the DWARF backend
will also try to guess whether something is a memory location or not, based
on whether there is any computation in the location expression. By simply
prepending the stack offset to existing expressions, we can accidentally
convert a register location into a memory location, which introduces a
suprise (and unintended) dereference.
The solution is to add DW_OP_stack_value whenever we add a DIExpression
computation to a stack *pointer*. It's an implicit location computed on the
expression stack, thus needs to be flagged as a stack_value.
For the edge case where the offset is zero and the location could be a register
location, DIExpression::prepend will still generate opcodes, and thus
DW_OP_stack_value must still be added.
Differential Revision: https://reviews.llvm.org/D63429
llvm-svn: 364736
Emit replacements for clobbered parameters location if the parameter
has unmodified value throughout the funciton. This is basic scenario
where we can use the debug entry values.
([12/13] Introduce the debug entry values.)
Co-authored-by: Ananth Sowda <asowda@cisco.com>
Co-authored-by: Nikola Prica <nikola.prica@rt-rk.com>
Co-authored-by: Ivan Baev <ibaev@cisco.com>
Differential Revision: https://reviews.llvm.org/D58042
llvm-svn: 364553
Once MIR code leaves SSA form and the liveness of a vreg is considered,
DBG_VALUE insts are able to refer to non-live vregs, because their
debug-uses do not contribute to liveness. This non-liveness becomes
problematic for optimizations like register coalescing, as they can't
``see'' the debug uses in the liveness analyses.
As a result registers get coalesced regardless of debug uses, and that can
lead to invalid variable locations containing unexpected values. In the
added test case, the first vreg operand of ADD32rr is merged with various
copies of the vreg (great for performance), but a DBG_VALUE of the
unmodified operand is blindly updated to the modified operand. This changes
what value the variable will appear to have in a debugger.
Fix this by changing any DBG_VALUE whose operand will be resurrected by
register coalescing to be a $noreg DBG_VALUE, i.e. give the variable no
location. This is an overapproximation as some coalesced locations are
safe (others are not) -- an extra domination analysis would be required to
work out which, and it would be better if we just don't generate non-live
DBG_VALUEs.
This fixes PR40010.
Differential Revision: https://reviews.llvm.org/D56151
llvm-svn: 364515
Summary:
Implements direct and indirect tail calls enabled by the 'tail-call'
feature in both DAG ISel and FastISel. Updates existing call tests and
adds new tests including a binary encoding test.
Reviewers: aheejin
Subscribers: dschuff, sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D62877
llvm-svn: 364445
The test only checks the existence of the `Types CU list` line.
Unfortunately I can't make a better test because
{gcc,clang} -fuse-ld={lld,gold} --gdb-index do not give me a non-empty types CU list.
Reviewed By: ikudrin
Differential Revision: https://reviews.llvm.org/D63537
llvm-svn: 363800
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
> llvm-svn: 363046
llvm-svn: 363786
This allows targets to make more decisions about reserved registers
after isel. For example, now it should be certain there are calls or
stack objects in the frame or not, which could have been introduced by
legalization.
Patch by Matthias Braun
llvm-svn: 363757
This patch changes MIR stack-id from an integer to an enum,
and adds printing/parsing support for this in MIR files. The default
stack-id '0' is now renamed to 'default'.
This should make MIR tests that have stack objects with different stack-ids
more descriptive. It also clarifies code operating on StackID.
Reviewers: arsenm, thegameg, qcolombet
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D60137
llvm-svn: 363533
Current findBestLoopTop can find and move one kind of block to top, a latch block has one successor. Another common case is:
* a latch block
* it has two successors, one is loop header, another is exit
* it has more than one predecessors
If it is below one of its predecessors P, only P can fall through to it, all other predecessors need a jump to it, and another conditional jump to loop header. If it is moved before loop header, all its predecessors jump to it, then fall through to loop header. So all its predecessors except P can reduce one taken branch.
Differential Revision: https://reviews.llvm.org/D43256
llvm-svn: 363471
This is consistent with GCC's behavior (which is the defacto standard
for pubnames). Though I find the presence of enumerators from enum
classes to be a bit confusing, possibly a bug on GCC's end (since they
can't be named unqualified, unlike the other names - and names nested in
classes don't go in pubnames, for instance - presumably because one must
name the class first & that's enough to limit the scope of the search)
llvm-svn: 363349
Summary:
Before it was using the fully qualified name only for static data members.
Now it does for all variable names to match MSVC.
Reviewers: rnk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D63012
llvm-svn: 363335
Constants, including G_GLOBAL_VALUE, are all emitted into the entry block which
lets us use the vreg def assuming it dominates all other users. However, it can
cause jumpy debug behaviour since the DebugLoc attached to these MIs are from
a user instruction that could be in a different block.
Fixes PR40887.
Differential Revision: https://reviews.llvm.org/D63286
llvm-svn: 363331
This patch makes the LiveDebugValues pass consider fragments when propagating
DBG_VALUE insts between blocks, fixing PR41979. Fragment info for a variable
location is added to the open-ranges key, which allows distinct fragments to be
tracked separately. To handle overlapping fragments things become slightly
funkier. To avoid excessive searching for overlaps in the data-flow part of
LiveDebugValues, this patch:
* Pre-computes pairings of fragments that overlap, for each DILocalVariable
* During data-flow, whenever something happens that causes an open range to
be terminated (via erase), any fragments pre-determined to overlap are
also terminated.
The effect of which is that when encountering a DBG_VALUE fragment that
overlaps others, the overlapped fragments do not get propagated to other
blocks. We still rely on later location-list building to correctly handle
overlapping fragments within blocks.
It's unclear whether a mixture of DBG_VALUEs with and without fragmented
expressions are legitimate. To avoid suprises, this patch interprets a
DBG_VALUE with no fragment as overlapping any DBG_VALUE _with_ a fragment.
Differential Revision: https://reviews.llvm.org/D62904
llvm-svn: 363256
We aim to ignore changes in variable locations during the prologue and
epilogue of functions, to avoid using space documenting location changes
that aren't visible. However in D61940 / r362951 this got ripped out as
the previous implementation was unsound.
Instead, use the FrameDestroy flag to identify when we're in the epilogue
of a function, and ignore variable location changes accordingly. This fits
in with existing code that examines the FrameSetup flag.
Some variable locations get shuffled in modified tests as they now cover
greater ranges, which is what would be expected. Some additional
single-location variables are generated too. Two tests are un-xfailed,
they were only xfailed due to r362951 deleting functionality they depended
on.
Apparently some out-of-tree backends don't accurately maintain FrameDestroy
flags -- if you're an out-of-tree maintainer and see changes in variable
locations disappear due to a faulty FrameDestroy flag, it's safe to back
this change out. The impact is just slightly more debug info than necessary.
Differential Revision: https://reviews.llvm.org/D62314
llvm-svn: 363245
Summary:
Bug: https://bugs.llvm.org/show_bug.cgi?id=39024
The bug reports that a vectorized loop is stepped through 4 times and each step through the loop seemed to show a different path. I found two problems here:
A) An incorrect line number on a preheader block (for.body.preheader) instruction causes a step into the loop before it begins.
B) Instructions in the middle block have different line numbers which give the impression of another iteration.
In this patch I give all of the middle block instructions the line number of the scalar loop latch terminator branch. This seems to provide the smoothest debugging experience because the vectorized loops will always end on this line before dropping into the scalar loop. To solve problem A I have altered llvm::SplitBlockPredecessors to accommodate loop header blocks.
I have set up a separate review D61933 for a fix which is required for this patch.
Reviewers: samsonov, vsk, aprantl, probinson, anemet, hfinkel, jmorse
Reviewed By: hfinkel, jmorse
Subscribers: jmorse, javed.absar, eraman, kcc, bjope, jmellorcrummey, hfinkel, gbedwell, hiraditya, zzheng, llvm-commits
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D60831
llvm-svn: 363046
This behavior was added in r130928 for both FastISel and SD, and then
disabled in r131156 for FastISel.
This re-enables it for FastISel with the corresponding fix.
This is triggered only when FastISel can't lower the arguments and falls
back to SelectionDAG for it.
FastISel contains a map of "register fixups" where at the end of the
selection phase it replaces all uses of a register with another
register that FastISel sometimes pre-assigned. Code at the end of
SelectionDAGISel::runOnMachineFunction is doing the replacement at the
very end of the function, while other pieces that come in before that
look through the MachineFunction and assume everything is done. In this
case, the real issue is that the code emitting COPY instructions for the
liveins (physreg to vreg) (EmitLiveInCopies) is checking if the vreg
assigned to the physreg is used, and if it's not, it will skip the COPY.
If a register wasn't replaced with its assigned fixup yet, the copy will
be skipped and we'll end up with uses of undefined registers.
This fix moves the replacement of registers before the emission of
copies for the live-ins.
The initial motivation for this fix is to enable tail calls for
swiftself functions, which were blocked because we couldn't prove that
the swiftself argument (which is callee-save) comes from a function
argument (live-in), because there was an extra copy (vreg to vreg).
A few tests are affected by this:
* llvm/test/CodeGen/AArch64/swifterror.ll: we used to spill x21
(callee-save) but never reload it because it's attached to the return.
We now don't even spill it anymore.
* llvm/test/CodeGen/*/swiftself.ll: we tail-call now.
* llvm/test/CodeGen/AMDGPU/mubuf-legalize-operands.ll: I believe this
test was not really testing the right thing, but it worked because the
same registers were re-used.
* llvm/test/CodeGen/ARM/cmpxchg-O0.ll: regalloc changes
* llvm/test/CodeGen/ARM/swifterror.ll: get rid of a copy
* llvm/test/CodeGen/Mips/*: get rid of spills and copies
* llvm/test/CodeGen/SystemZ/swift-return.ll: smaller stack
* llvm/test/CodeGen/X86/atomic-unordered.ll: smaller stack
* llvm/test/CodeGen/X86/swifterror.ll: same as AArch64
* llvm/test/DebugInfo/X86/dbg-declare-arg.ll: stack size changed
Differential Revision: https://reviews.llvm.org/D62361
llvm-svn: 362963
This commit reapplies r359426 (which was reverted in r360301 due to
performance problems) and rolls in D61940 to address the performance problem.
I've combined the two to avoid creating a span of slow-performance, and to
ease reverting if more problems crop up.
The summary of D61940: This patch removes the "ChangingRegs" facility in
DbgEntityHistoryCalculator, as its overapproximate nature can produce incorrect
variable locations. An unchanging register doesn't mean a variable doesn't
change its location.
The patch kills off everything that calculates the ChangingRegs vector.
Previously ChangingRegs spotted epilogues and marked registers as unchanging if
they weren't modified outside the epilogue, increasing the chance that we can
emit a single-location variable record. Without this feature,
debug-loc-offset.mir and pr19307.mir become temporarily XFAIL. They'll be
re-enabled by D62314, using the FrameDestroy flag to identify epilogues, I've
split this into two steps as FrameDestroy isn't necessarily supported by all
backends.
The logic for terminating variable locations at the end of a basic block now
becomes much more enjoyably simple: we just terminate them all.
Other test changes: inlined-argument.ll becomes XFAIL, but for a longer term.
The current algorithm for detecting that a variable has a single-location
doesn't work in this scenario (inlined function in multiple blocks), only other
bugs were making this test work. fission-ranges.ll gets slightly refreshed too,
as the location of "p" is now correctly determined to be a single location.
Differential Revision: https://reviews.llvm.org/D61940
llvm-svn: 362951
Variable's stack location can stretch longer than it should. If a
variable is placed at the stack in a some nested basic block its range
can be calculated to be up to the next occurrence of the variable's
DBG_VALUE, or up to the end of the function, thus covering a basic
blocks that should not be included in the variable’s location range.
This happens because the DbgEntityHistoryCalculator ends register
locations at the end of a basic block only if the variable’s location
register has been changed throughout the function, which is not the
case for the register used to reference stack objects.
This patch also tries to produce a single value location if the location
list builder managed to merge all the locations into one.
Reviewers: aprantl, dstenb, jmorse
Reviewed By: aprantl, dstenb, jmorse
Subscribers: djtodoro, ivanbaev, asowda
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D61600
llvm-svn: 362923
Incorrect Debug Variable Range was calculated while "COMPUTING LIVE DEBUG VARIABLES" stage.
Range for Debug Variable("i") computed according to current state of instructions
inside of basic block. But Register Allocator creates new instructions which were not taken
into account when Live Debug Variables computed. In the result DBG_VALUE instruction for
the "i" variable was put after these newly inserted instructions. This is incorrect.
Debug Value for the loop counter should be inserted before any loop instruction.
Differential Revision: https://reviews.llvm.org/D62650
llvm-svn: 362750
When LiveDebugValues deduces new variable's location from spill, restore or
register copy instruction it should close old variable's location. Otherwise
we can have multiple block output locations for same variable. That could lead
to inserting two DBG_VALUEs for same variable to the beginning of the successor
block which results to ignoring of first DBG_VALUE.
Reviewers: aprantl, jmorse, wolfgangp, dstenb
Reviewed By: aprantl
Subscribers: probinson, asowda, ivanbaev, petarj, djtodoro
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D62196
llvm-svn: 362373
ARM64 CodeView test was incorrectly put under test/DebugInfo/COFF folder which
runs for all all architectures. This fix moves it to a subfolder AArch64 with
lit.local.cfg which specify it supports AArch64 only.
llvm-svn: 362283
CodeView has its own register map which is defined in cvconst.h. Missing this
mapping before saving register to CodeView causes debugger to show incorrect
value for all register based variables, like variables in register and local
variables addressed by register (stack pointer + offset).
This change added mapping between LLVM register and CodeView register so the
correct register number will be stored to CodeView/PDB, it aso fixed the
mapping from CodeView register number to register name based on current
CPUType but print PDB to yaml still assumes X86 CPU and needs to be fixed.
Differential Revision: https://reviews.llvm.org/D62608
llvm-svn: 362280
Summary:
Keeps track of the enums that were used by saving them as DIGlobalVariables,
since CodeView emits debug info for global constants.
Reviewers: rnk
Subscribers: aprantl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62635
llvm-svn: 362166
Summary:
Add static data members to IR debug info's list of global variables
so that they are emitted as S_CONSTANT records.
Related to https://bugs.llvm.org/show_bug.cgi?id=41615.
Reviewers: rnk
Subscribers: aprantl, cfe-commits, llvm-commits, thakis
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D62167
llvm-svn: 362038
Summary:
When DwarfDebug::buildLocationList() encountered an undef debug value,
it would truncate all open values, regardless if they were overlapping or
not. This patch fixes so that it only does that for overlapping fragments.
This change unearthed a bug that I had introduced in D57511,
which I have fixed in this patch. The code in DebugHandlerBase that
changes labels for parameter debug values could break DwarfDebug's
assumption that the labels for the entries in the debug value history
are monotonically increasing. Before this patch, that bug could result
in location list entries whose ending address was lower than the
beginning address, and with the changes for undef debug values that this
patch introduces it could trigger an assertion, due to attempting to
emit location list entries with empty ranges. A reproducer for the bug
is added in param-reg-const-mix.mir.
Reviewers: aprantl, jmorse, probinson
Reviewed By: aprantl
Subscribers: javed.absar, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D62379
llvm-svn: 361820
This lead to errors when dumping binaries with v4 and v5 units linked
together (but could've also errored on v5 units that did/didn't use
str_offsets).
Also improves error handling and messages around invalid str_offsets
contributions.
llvm-svn: 361683
This test case was incorrect because it mixed DWARF32 and DWARF64 for a
single unit (DWARF32 unit referencing a DWARF64 str_offsets section). So
fix enough of the unit parsing for DWARF64 and make the test valid.
(not sure if anyone needs DWARF64 support though - support in
libDebugInfoDWARF has been added piecemeal and LLVM doesn't produce it
at all)
llvm-svn: 361582
This reverts commit rr360902. It caused an assertion failure in
lib/IR/DebugInfoMetadata.cpp: Assertion `(OffsetInBits + SizeInBits <=
FragmentSizeInBits) && "new fragment outside of original fragment"'
failed.
PR41931.
llvm-svn: 361246
This option provides only the base filename, not a full relative path.
Part of the fix for PR41839.
Differential Revision: https://reviews.llvm.org/D62071
llvm-svn: 361245
Summary:
This emits S_CONSTANT records for global variables.
Currently this emits records for the global variables already being tracked in the
LLVM IR metadata, which are just constant global variables; we'll also want S_CONSTANTs
for static data members and enums.
Related to https://bugs.llvm.org/show_bug.cgi?id=41615
Reviewers: rnk
Subscribers: aprantl, hiraditya, llvm-commits, thakis
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61926
llvm-svn: 360948
Fixes issue: https://bugs.llvm.org/show_bug.cgi?id=40645
Previously, LLVM had no functional way of performing casts inside of a
DIExpression(), which made salvaging cast instructions other than Noop casts
impossible. With the recent addition of DW_OP_LLVM_convert this salvaging is
now possible, and so can be used to fix the attached bug as well as any cases
where SExt instruction results are lost in the debugging metadata. This patch
introduces this fix by expanding the salvage debug info method to cover these
cases using the new operator.
Differential revision: https://reviews.llvm.org/D61184
llvm-svn: 360902
Trace through multiple COPYs when looking for a physreg source. Add
hinting for vregs that will be copied into physregs (we only hinted
for vregs getting copied to a physreg previously). Give hinted a
register a bonus when deciding which value to spill. This is part of
my rewrite regallocfast series. In fact this one doesn't even have an
effect unless you also flip the allocation to happen from back to
front of a basic block. Nonetheless it helps to split this up to ease
review of D52010
Patch by Matthias Braun
llvm-svn: 360887
Fixes issue: https://bugs.llvm.org/show_bug.cgi?id=40645
Previously, LLVM had no functional way of performing casts inside of a
DIExpression(), which made salvaging cast instructions other than Noop
casts impossible. With the recent addition of DW_OP_LLVM_convert this
salvaging is now possible, and so can be used to fix the attached bug as
well as any cases where SExt instruction results are lost in the
debugging metadata. This patch introduces this fix by expanding the
salvage debug info method to cover these cases using the new operator.
Differential revision: https://reviews.llvm.org/D61184
llvm-svn: 360772
The 3-field form was introduced by D3499 in 2014 and the legacy 2-field
form was planned to be removed in LLVM 4.0
For the textual format, this patch migrates the existing 2-field form to
use the 3-field form and deletes the compatibility code.
test/Verifier/global-ctors-2.ll checks we have a friendly error message.
For bitcode, lib/IR/AutoUpgrade UpgradeGlobalVariables will upgrade the
2-field form (add i8* null as the third field).
Reviewed By: rnk, dexonsmith
Differential Revision: https://reviews.llvm.org/D61547
llvm-svn: 360742
The condition !AddrPool.empty() is tested before attachRangesOrLowHighPC(), which may add an entry to AddrPool. We emit DW_AT_low_pc (DW_FORM_addrx) but may incorrectly omit DW_AT_addr_base for LineTablesOnly. This can be easily reproduced:
clang -gdwarf-5 -gmlt -c a.cc
Fix this by moving !AddrPool.empty() below.
This was discovered while investigating an lld crash (fixed by D61889) on such object files: ld.lld --gdb-index a.o
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D61891
llvm-svn: 360678
Follow up to r359122, after a bug was reported in it - the original
change too aggressively tried to move related types out of type units,
which included unnamed types (like array types) which can't reasonably
be declared-but-not-defined.
A step beyond that is that some types in type units can be anonymous, if
they are types with a name for linkage purposes (eg: "typedef struct { }
x;"). So ensure those don't get turned into plain declarations (without
signatures) because, lacking names, they can't be resolved to the
definition.
[Also include a fix for llvm-dwarfdump/libDebugInfoDWARF to pretty print
types in type units]
llvm-svn: 360458
In certain circumstances, optimizations pick line numbers from debug
intrinsic instructions as the new location for altered instructions. This
is problematic because the line number of a debugging intrinsic is
meaningless (it doesn't produce any machine instruction), only the scope
information is valid. The result can be the line number of a variable
declaration "leaking" into real code from debugging intrinsics, making the
line table un-necessarily jumpy, and potentially different with / without
variable locations.
Fix this by using zero line numbers when promoting dbg.declare intrinsics
into dbg.values: this is safe for debug intrinsics as their line numbers
are meaningless, and reduces the scope for damage / misleading stepping
when optimizations pick locations from the wrong place.
Differential Revision: https://reviews.llvm.org/D59272
llvm-svn: 360415
as it was causing significant compile time regressions.
This reverts commit r359426 while we come up with testcases and additional ideas.
llvm-svn: 360301
DWARF5, 2.12 20ff says that
Any debugging information entry representing a pointer or reference
type [may have a DW_AT_address_class attribute].
The existing code (https://reviews.llvm.org/D29670) seems to take a
quite literal interpretation of that wording. I don't see a reason why
an rvalue reference isn't a reference type in the spirit of that
paragraph. This patch allows rvalue references to also have address
spaces.
rdar://problem/50511483
Differential Revision: https://reviews.llvm.org/D61625
llvm-svn: 360176
This fixes the https://bugs.llvm.org/show_bug.cgi?id=41355.
Previously with -r we printed relocation section name instead of the target section name.
It was like this: "RELOCATION RECORDS FOR [.rel.text]"
Now it is: "RELOCATION RECORDS FOR [.text]"
Also when relocation target section has more than one relocation section,
we did not combine the output. Now we do.
Differential revision: https://reviews.llvm.org/D61312
llvm-svn: 360143
Summary:
Prior to DWARF v5, a directory index of 0 represents DW_AT_comp_dir.
In DWARF v5, the index starts with 0 and Entry.DirIdx is the index into
Prologue.IncludeDirectories.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D61253
llvm-svn: 360015
-t is --symbols in llvm-readobj but --section-details (unimplemented) in readelf.
The confusing option should not be used since we aim for improving
compatibility.
Keep just one llvm-readobj -t use case in test/tools/llvm-readobj/symbols.test
llvm-svn: 359661
We use both -long-option and --long-option in tests. Switch to --long-option for consistency.
In the "llvm-readelf" mode, -long-option is discouraged as it conflicts with grouped short options and it is not accepted by GNU readelf.
While updating the tests, change llvm-readobj -s to llvm-readobj -S to reduce confusion ("s" is --section-headers in llvm-readobj but --symbols in llvm-readelf).
llvm-svn: 359649
Summary:
Prior to this patch, the CommandLine parser would strip an
unlimitted number of dashes from options. This patch limits it to
two.
Reviewers: rnk
Reviewed By: rnk
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D61229
llvm-svn: 359480
This patch fixes PR40795, where constant-valued variable locations can
"leak" into blocks placed at higher addresses. The root of this is that
DbgEntityHistoryCalculator terminates all register variable locations at
the end of each block, but not constant-value variable locations.
Fixing this requires constant-valued DBG_VALUE instructions to be
broadcast into all blocks where the variable location remains valid, as
documented in the LiveDebugValues section of SourceLevelDebugging.rst,
and correct termination in DbgEntityHistoryCalculator.
Differential Revision: https://reviews.llvm.org/D59431
llvm-svn: 359426
While this doesn't come up in reasonable cases currently (the only user
defined types not in type units are ones without linkage - which makes
for near-ODR violations, because it'd be a type with linkage referencing
a type without linkage - such a type can't be validly defined in more
than one TU, so arguably it shouldn't be in a type unit to begin with -
but it's a convenient way to demonstrate an issue that will become more
revalent with homed modular debug info type definitions - which also
don't need to be in type units but more legitimately so).
Precursor to the Clang change to de-type-unit (by omitting the
'identifier') types homed due to strong linkage vtables. (making that
change without this one would lead to major type duplication in type
units)
llvm-svn: 359122
Originally committed in r358931
Reverted in r358997
Seems this change made Apple accelerator tables miss names (because
names started respecting the CU NameTableKind GNU & assuming that
shouldn't produce accelerated names too), which is never correct (apple
accelerator tables don't have separators or CU lists - if present, they
must describe all names in all CUs).
Original Description:
Currently to opt in to debug_names in DWARFv5, the IR must contain
'nameTableKind: Default' which also enables debug_pubnames.
Instead, only allow one of {debug_names, apple_names, debug_pubnames,
debug_gnu_pubnames}.
nameTableKind: Default gives debug_names in DWARFv5 and greater,
debug_pubnames in v4 and earlier - and apple_names when tuning for lldb
on MachO.
nameTableKind: GNU always gives gnu_pubnames
llvm-svn: 359026
Currently to opt in to debug_names in DWARFv5, the IR must contain
'nameTableKind: Default' which also enables debug_pubnames.
Instead, only allow one of {debug_names, apple_names, debug_pubnames,
debug_gnu_pubnames}.
nameTableKind: Default gives debug_names in DWARFv5 and greater,
debug_pubnames in v4 and earlier - and apple_names when tuning for lldb
on MachO.
nameTableKind: GNU always gives gnu_pubnames
llvm-svn: 358931
This is a follow-up to r291037+r291258, which used null debug locations
to prevent jumpy line tables.
Using line 0 locations achieves the same effect, but works better for
crash attribution because it preserves the right inline scope.
Differential Revision: https://reviews.llvm.org/D60913
llvm-svn: 358791
Summary:
When calculating the debug value history, DbgEntityHistoryCalculator
would only keep track of register clobbering for the latest debug value
per inlined entity. This meant that preceding register-described debug
value fragments would live on until the next overlapping debug value,
ignoring any potential clobbering. This patch amends
DbgEntityHistoryCalculator so that it keeps track of all registers that
a inlined entity's currently live debug values are described by.
The DebugInfo/COFF/pieces.ll test case has had to be changed since
previously a register-described fragment would incorrectly outlive its
basic block.
The parent patch D59941 is expected to increase the coverage slightly,
as it makes sure that location list entries are inserted after clobbered
fragments, and this patch is expected to decrease it, as it stops
preceding register-described from living longer than they should. All in
all, this patch and the preceding patch has a negligible effect on the
output from `llvm-dwarfdump -statistics' for a clang-3.4 binary built
using the RelWithDebInfo build profile. "Scope bytes covered" increases
by 0.5%, and "variables with location" increases from 2212083 to
2212088, but it should improve the accuracy quite a bit.
This fixes PR40283.
Reviewers: aprantl, probinson, dblaikie, rnk, bjope
Reviewed By: aprantl
Subscribers: llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D59942
llvm-svn: 358073
Summary:
Currently the DbgValueHistorymap only keeps track of clobbered registers
for the last debug value that it has encountered. This could lead to
preceding register-described debug values living on longer in the
location lists than they should. See PR40283 for an example. This
patch does not introduce tracking of multiple registers, but changes
the DbgValueHistoryMap structure to allow for that in a follow-up
patch. This patch is not NFC, as it at least fixes two bugs in
DwarfDebug (both are covered in the new clobbered-fragments.mir test):
* If a debug value was clobbered (its End pointer set), the value would
still be added to OpenRanges, meaning that the succeeding location list
entries could potentially contain stale values.
* If a debug value was clobbered, and there were non-overlapping
fragments that were still live after the clobbering, DwarfDebug would
not create a location list entry starting directly after the
clobbering instruction. This meant that the location list could have
a gap until the next debug value for the variable was encountered.
Before this patch, the history map was represented by <Begin, End>
pairs, where a new pair was created for each new debug value. When
dealing with partially overlapping register-described debug values, such
as in the following example:
DBG_VALUE $reg2, $noreg, !1, !DIExpression(DW_OP_LLVM_fragment, 32, 32)
[...]
DBG_VALUE $reg3, $noreg, !1, !DIExpression(DW_OP_LLVM_fragment, 64, 32)
[...]
$reg2 = insn1
[...]
$reg3 = insn2
the history map would then contain the entries `[<DV1, insn1>, [<DV2, insn2>]`.
This would leave it up to the users of the map to be aware of
the relative order of the instructions, which e.g. could make
DwarfDebug::buildLocationList() needlessly complex. Instead, this patch
makes the history map structure monotonically increasing by dropping the
End pointer, and replacing that with explicit clobbering entries in the
vector. Each debug value has an "end index", which if set, points to the
entry in the vector that ends the debug value. The ending entry can
either be an overlapping debug value, or an instruction which clobbers
the register that the debug value is described by. The ending entry's
instruction can thus either be excluded or included in the debug value's
range. If the end index is not set, the debug value that the entry
introduces is valid until the end of the function.
Changes to test cases:
* DebugInfo/X86/pieces-3.ll: The range of the first DBG_VALUE, which
describes that the fragment (0, 64) is located in RDI, was
incorrectly ended by the clobbering of RAX, which the second
(non-overlapping) DBG_VALUE was described by. With this patch we
get a second entry that only describes RDI after that clobbering.
* DebugInfo/ARM/partial-subreg.ll: This test seems to indiciate a bug
in LiveDebugValues that is caused by it not being aware of fragments.
I have added some comments in the test case about that. Also, before
this patch DwarfDebug would incorrectly include a register-described
debug value from a preceding block in a location list entry.
Reviewers: aprantl, probinson, dblaikie, rnk, bjope
Reviewed By: aprantl
Subscribers: javed.absar, kristof.beyls, jdoerfert, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D59941
llvm-svn: 358072
COMMON blocks are a feature of Fortran that has no direct analog in C languages, but they are similar to data sections in assembly language programming. A COMMON block is a named area of memory that holds a collection of variables. Fortran subprograms may map the COMMON block memory area to their own, possibly distinct, non-empty list of variables. A Fortran COMMON block might look like the following example.
COMMON /ALPHA/ I, J
For this construct, the compiler generates a new scope-like DI construct (!DICommonBlock) into which variables (see I, J above) can be placed. As the common block implies a range of storage with global lifetime, the !DICommonBlock refers to a !DIGlobalVariable. The Fortran variable that comprise the COMMON block are also linked via metadata to offsets within the global variable that stands for the entire common block.
@alpha_ = common global %alphabytes_ zeroinitializer, align 64, !dbg !27, !dbg !30, !dbg !33!14 = distinct !DISubprogram(…)
!20 = distinct !DICommonBlock(scope: !14, declaration: !25, name: "alpha")
!25 = distinct !DIGlobalVariable(scope: !20, name: "common alpha", type: !24)
!27 = !DIGlobalVariableExpression(var: !25, expr: !DIExpression())
!29 = distinct !DIGlobalVariable(scope: !20, name: "i", file: !3, type: !28)
!30 = !DIGlobalVariableExpression(var: !29, expr: !DIExpression())
!31 = distinct !DIGlobalVariable(scope: !20, name: "j", file: !3, type: !28)
!32 = !DIExpression(DW_OP_plus_uconst, 4)
!33 = !DIGlobalVariableExpression(var: !31, expr: !32)
The DWARF generated for this is as follows.
DW_TAG_common_block:
DW_AT_name: alpha
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: common alpha
DW_AT_type: array of 8 bytes
DW_AT_location: @alpha_+0
DW_TAG_variable:
DW_AT_name: i
DW_AT_type: integer*4
DW_AT_location: @Alpha+0
DW_TAG_variable:
DW_AT_name: j
DW_AT_type: integer*4
DW_AT_location: @Alpha+4
Patch by Eric Schweitz!
Differential Revision: https://reviews.llvm.org/D54327
llvm-svn: 357934
Summary:
This avoids needing an isel pattern for each condition code. And it removes translation switches for converting between Jcc instructions and condition codes.
Now the printer, encoder and disassembler take care of converting the immediate. We use InstAliases to handle the assembly matching. But we print using the asm string in the instruction definition. The instruction itself is marked IsCodeGenOnly=1 to hide it from the assembly parser.
Reviewers: spatel, lebedev.ri, courbet, gchatelet, RKSimon
Reviewed By: RKSimon
Subscribers: MatzeB, qcolombet, eraman, hiraditya, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D60228
llvm-svn: 357802
Currently, YAML has the following syntax for describing the symbols:
Symbols:
Local:
LocalSymbol1:
...
LocalSymbol2:
...
...
Global:
GlobalSymbol1:
...
Weak:
...
GNUUnique:
I.e. symbols are grouped by their bindings. That is not very convenient,
because:
It does not allow to set a custom binding, what can be useful for producing
broken/special outputs for test cases. Adding a new binding would require to
change a syntax (what we observed when added GNUUnique recently).
It does not allow to change the order of the symbols in .symtab/.dynsym,
i.e. currently all Local symbols are placed first, then Global, Weak and GNUUnique
are following, but we are not able to change the order.
It is not consistent. Binding is just one of the properties of the symbol,
we do not group them by other properties.
It makes the code more complex that it can be. This patch shows it can be simplified
with the change performed.
The patch changes the syntax to just:
Symbols:
Symbol1:
...
Symbol2:
...
...
With that, we are able to work with the binding field just like with any other symbol property.
Differential revision: https://reviews.llvm.org/D60122
llvm-svn: 357595
Summary:
This considers module symbol streams and the global symbol stream to be
roots. Most types that this considers "unreferenced" are referenced by
LF_UDT_MOD_SRC_LINE id records, which VC seems to always include.
Essentially, they are types that the user can only find in the debugger
if they call them by name, they cannot be found by traversing a symbol.
In practice, around 80% of type information in a PDB is referenced by a
symbol. That seems like a reasonable number.
I don't really plan to do anything with this tool. It mostly just exists
for informational purposes, and to confirm that we probably don't need
to implement type reference tracking in LLD. We can continue to merge
all types as we do today without wasting space.
Reviewers: zturner, aganea
Subscribers: mgorny, hiraditya, arphaman, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59620
llvm-svn: 356692
The 2nd loop calculates spill costs but reports free registers as cost
0 anyway, so there is little benefit from having a separate early
loop.
Surprisingly this is not NFC, as many register are marked regDisabled
so the first loop often picks up later registers unnecessarily instead
of the first one available in the allocation order...
Patch by Matthias Braun
llvm-svn: 356499
Moving subprogram specific flags into DISPFlags makes IR code more readable.
In addition, we provide free space in DIFlags for other
'non-subprogram-specific' debug info flags.
Patch by Djordje Todorovic.
Differential Revision: https://reviews.llvm.org/D59288
llvm-svn: 356454
Introduce a DW_OP_LLVM_convert Dwarf expression pseudo op that allows
for a convenient way to perform type conversions on the Dwarf expression
stack. As an additional bonus it paves the way for using other Dwarf
v5 ops that need to reference a base_type.
The new DW_OP_LLVM_convert is used from lib/Transforms/Utils/Local.cpp
to perform sext/zext on debug values but mainly the patch is about
preparing terrain for adding other Dwarf v5 ops that need to reference a
base_type.
For Dwarf v5 the op maps to DW_OP_convert and for earlier versions a
complex shift & mask pattern is generated to emulate sext/zext.
This is a recommit of r356442 with trivial fixes for the failing tests.
Differential Revision: https://reviews.llvm.org/D56587
llvm-svn: 356451
Introduce a DW_OP_LLVM_convert Dwarf expression pseudo op that allows
for a convenient way to perform type conversions on the Dwarf expression
stack. As an additional bonus it paves the way for using other Dwarf
v5 ops that need to reference a base_type.
The new DW_OP_LLVM_convert is used from lib/Transforms/Utils/Local.cpp
to perform sext/zext on debug values but mainly the patch is about
preparing terrain for adding other Dwarf v5 ops that need to reference a
base_type.
For Dwarf v5 the op maps to DW_OP_convert and for earlier versions a
complex shift & mask pattern is generated to emulate sext/zext.
Differential Revision: https://reviews.llvm.org/D56587
llvm-svn: 356442
Summary:
Look past bitcasts when looking for parameter debug values that are
described by frame-index loads in `EmitFuncArgumentDbgValue()`.
In the attached test case we would be left with an undef `DBG_VALUE`
for the parameter without this patch.
A similar fix was done for parameters passed in registers in D13005.
This fixes PR40777.
Reviewers: aprantl, vsk, jmorse
Reviewed By: aprantl
Subscribers: bjope, javed.absar, jdoerfert, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D58831
llvm-svn: 356363
This indicates an intrinsic parameter is required to be a constant,
and should not be replaced with a non-constant value.
Add the attribute to all AMDGPU and generic intrinsics that comments
indicate it should apply to. I scanned other target intrinsics, but I
don't see any obvious comments indicating which arguments are intended
to be only immediates.
This breaks one questionable testcase for the autoupgrade. I'm unclear
on whether the autoupgrade is supposed to really handle declarations
which were never valid. The verifier fails because the attributes now
refer to a parameter past the end of the argument list.
llvm-svn: 355981
Summary:
Swift now generates PDBs for debugging on Windows. llvm and lldb
need a language enumerator value too properly handle the output
emitted by swiftc.
Subscribers: jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59231
llvm-svn: 355882
Summary:
This patch works around the bug in the ptxas tool with the processing of bytes
separated by the comma symbol. The emission of the packed string is
temporarily disabled.
Reviewers: tra
Subscribers: jholewinski, jdoerfert, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D59148
llvm-svn: 355740
Summary:
If the LLVM module shows that it has debug info, but the file is
actually empty and the real debug info is not emitted, the ptxas tool
emits error 'Debug information not found in presence of .target debug'.
We need at leas one empty debug section to silence this message. Section
`.debug_loc` is not emitted for PTX and we can emit empty `.debug_loc`
section if `debug` option was emitted.
Reviewers: tra
Subscribers: jholewinski, aprantl, llvm-commits
Differential Revision: https://reviews.llvm.org/D57250
llvm-svn: 355719
When using full LTO it is possible that template function definition DIE
is bound to one compilation unit and it's declaration to another. We should
add function declaration attributes on behalf of its owner CU otherwise
we may end up with malformed file identifier in function declaration
DW_AT_decl_file attribute.
Differential revision: https://reviews.llvm.org/D58538
llvm-svn: 354978
Summary:
A store to an object whose lifetime is about to end can be removed.
See PR40550 for motivation.
Reviewers: niravd
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D57541
llvm-svn: 354244
In this patch SelectionDAG tries to salvage any dbg.values that are going to be
dropped, in case they can be recovered from Values in the current BB. It also
strengthens SelectionDAGs handling of dangling debug data, so that dbg.values
are *always* emitted (as Undef or otherwise) instead of dangling forever.
The motivation behind this patch exists in the new test case: a memory address
(here a bitcast and GEP) exist in one basic block, and a dbg.value referring to
the address is left in the 'next' block. The base pointer is live across all
basic blocks. In current llvm trunk the dbg.value cannot be encoded, and it
isn't even emitted as an Undef DBG_VALUE.
The change is simply: if we're definitely going to drop a dbg.value, repeatedly
apply salvageDebugInfo to its operand until either we find something that can
be encoded, or we can't salvage any further in which case we produce an Undef
DBG_VALUE. To know when we're "definitely going to drop a dbg.value",
SelectionDAG signals SelectionDAGBuilder when all IR instructions have been
encoded to force salvaging. This ensures that any dbg.value that's dangling
after DAG creation will have a corresponding DBG_VALUE encoded.
Differential Revision: https://reviews.llvm.org/D57694
llvm-svn: 353954
SelectionDAGBuilder has special handling for dbg.value intrinsics that are
understood to define the location of function parameters on entry to the
function. To enable this, we avoid recording a dbg.value as a virtual register
reference if it might be such a parameter, so that it later hits
EmitFuncArgumentDbgValue.
This patch reduces the set of circumstances where we avoid recording a
dbg.value as a virtual register reference, to allow more "normal" variables
to be recorded that way. We now only bypass for potential parameters if:
* The dbg.value operand is an Argument,
* The Variable is a parameter, and
* The Variable is not inlined.
meaning it's very likely that the dbg.value is a function-entry parameter
location.
Differential Revision: https://reviews.llvm.org/D57584
llvm-svn: 353948
Summary:
This is a follow-up to D57510. This patch stops DebugHandlerBase from
changing the starting label for the first non-overlapping,
register-described parameter DBG_VALUEs to the beginning of the
function. That code did not consider what defined the registers, which
could result in the ranges for the debug values starting before their
defining instructions. We currently do not emit debug values for
constant values directly at the start of the function, so this code is
still useful for such values, but my intention is to remove the code
from DebugHandlerBase completely when we get there. One reason for
removing it is that the code violates the history map's ranges, which I
think can make it quite confusing when troubleshooting.
In D57510, PrologEpilogInserter was amended so that parameter DBG_VALUEs
now are kept at the start of the entry block, even after emission of
prologue code. That was done to reduce the degradation of debug
completeness from this patch. PR40638 is another example, where the
lexical-scope trimming that LDV does, in combination with scheduling,
results in instructions after the prologue being left without locations.
There might be other cases where the DBG_VALUEs are pushed further down,
for which the DebugHandlerBase code may be helpful, but as it now quite
often result in incorrect locations, even after the prologue, it seems
better to remove that code, and try to work our way up with accurate
locations.
In the long run we should maybe not aim to provide accurate locations
inside the prologue. Some single location descriptions, at least those
referring to stack values, generate inaccurate values inside the
epilogue, so we maybe should not aim to achieve accuracy for location
lists. However, it seems that we now emit line number programs that can
result in GDB and LLDB stopping inside the prologue when doing line
number stepping into functions. See PR40188 for more information.
A summary of some of the changed test cases is available in PR40188#c2.
Reviewers: aprantl, dblaikie, rnk, jmorse
Reviewed By: aprantl
Subscribers: jdoerfert, jholewinski, jvesely, javed.absar, llvm-commits
Tags: #debug-info, #llvm
Differential Revision: https://reviews.llvm.org/D57511
llvm-svn: 353928
Salvaging a redundant load instruction into a debug expression hides a
memory read from optimisation passes. Passes that alter memory behaviour
(such as LICM promoting memory to a register) aren't aware of these debug
memory reads and leave them unaltered, making the debug variable location
point somewhere unsafe.
Teaching passes to know about these debug memory reads would be challenging
and probably incomplete. Finding dbg.value instructions that need to be fixed
would likely be computationally expensive too, as more analysis would be
required. It's better to not generate debug-memory-reads instead, alas.
Changed tests:
* DeadStoreElim: test for salvaging of intermediate operations contributing
to the dead store, instead of salvaging of the redundant load,
* GVN: remove debuginfo behaviour checks completely, this behaviour is still
covered by other tests,
* InstCombine: don't test for salvaged loads, we're removing that behaviour.
Differential Revision: https://reviews.llvm.org/D57962
llvm-svn: 353824
Summary:
This is a preparatory change for removing the code from
DebugHandlerBase::beginFunction() which changes the starting label for
the first non-overlapping DBG_VALUEs of parameters to the beginning of
the function. It does that to be able to show parameters when entering a
function. However, that code does not consider what defines the values,
which can result in the ranges for the debug values starting before
their defining instructions. That code is removed in a follow-up patch.
When prologue code is inserted, it leads to DBG_VALUEs that start
directly in the entry block being moved down after the prologue
instructions. This patch fixes that by stashing away DBG_VALUEs for
parameters before emitting the prologue, and then reinserts them at the
start of the block. This assumes that there is no target that somehow
clobbers parameter registers in the frame setup; there is no such case
in the lit tests at least.
See PR40188 for more information.
Reviewers: aprantl, dblaikie, rnk, jmorse
Reviewed By: aprantl
Subscribers: bjope, llvm-commits
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D57510
llvm-svn: 353823