When splitting a subrange we end up with two different subranges covering
two different, non overlapping, lanes.
As part of this splitting the VNIs of the original live-range need
to be dispatched to the subranges according to which lanes they are
actually defining.
Prior to this patch we were assuming that all values were defining
all lanes. This was wrong as demonstrated by llvm.org/PR40835.
Differential Revision: https://reviews.llvm.org/D59731
llvm-svn: 357032
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
It is legal for a PHI node not to have a live value in a predecessor
as long as the end of the predecessor is jointly dominated by an undef
value.
llvm-svn: 335607
Headers/Implementation files should be named after the class they
declare/define.
Also eliminated an `#include "llvm/CodeGen/LiveIntervalAnalysis.h"` in
favor of `class LiveIntarvals;`
llvm-svn: 320546
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
LLVM Coding Standards:
Function names should be verb phrases (as they represent actions), and
command-like function should be imperative. The name should be camel
case, and start with a lower case letter (e.g. openFile() or isFoo()).
Differential Revision: https://reviews.llvm.org/D40416
llvm-svn: 319168
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
- DenseMap should be faster than std::map
- Use the `InsertRes = insert() if (!InsertRes.inserted)` pattern rather
than the `if (!X.contains(...)) { X.insert(...); }` to save one map
lookup.
llvm-svn: 306436
Specifically avoid implicit conversions from/to integral types to
avoid potential errors when changing the underlying type. For example,
a typical initialization of a "full" mask was "LaneMask = ~0u", which
would result in a value of 0x00000000FFFFFFFF if the type was extended
to uint64_t.
Differential Revision: https://reviews.llvm.org/D27454
llvm-svn: 289820
Machine programs need a definition of each vreg before reaching a use
(the definition may come from an IMPLICIT_DEF instruction). This class
of errors is not detected by the MachineVerifier because of efficiency
concerns. LiveRangeCalc used to report these problems, make it do that
again (followup to r279625).
Also use report_fatal_error() instead of llvm_unreachable() as the error
reporting is only present in asserts build anyway.
llvm-svn: 281914
Subregister definitions are considered uses for the purpose of tracking
liveness of the whole register. At the same time, when calculating live
interval subranges, subregister defs should not be treated as uses.
Differential Revision: https://reviews.llvm.org/D24190
llvm-svn: 280532
MRI::getMaxLaneMaskForVReg does not always cover the whole register.
For example, on X86 the upper 16 bits of EAX cannot be accessed via
any subregister. Consequently, there is no lane mask that only covers
that part of EAX. The getMaxLaneMaskForVReg will return the union of
the lane masks for all subregisters, and in case of EAX, that union
will not cover the upper 16 bits.
This fixes https://llvm.org/bugs/show_bug.cgi?id=29132
llvm-svn: 279969
The register allocator can split a live interval of a register into a set
of smaller intervals. After the allocation of registers is complete, the
rewriter will modify the IR to replace virtual registers with the corres-
ponding physical registers. At this stage, if a register corresponding
to a subregister of a virtual register is used, the rewriter will check
if that subregister is undefined, and if so, it will add the <undef> flag
to the machine operand. The function verifying liveness of the subregis-
ter would assume that it is undefined, unless any of the subranges of the
live interval proves otherwise.
The problem is that the live intervals created during splitting do not
have any subranges, even if the original parent interval did. This could
result in the <undef> flag placed on a register that is actually defined.
Differential Revision: http://reviews.llvm.org/D21189
llvm-svn: 279625
We now use LiveRangeCalc::extendToUses() instead of a specially designed
algorithm in constructMainRangeFromSubranges():
- The original motivation for constructMainRangeFromSubranges() were
differences between the main liverange and subranges because of hidden
dead definitions. This case however cannot happen anymore with the
DetectDeadLaneMasks pass in place.
- It simplifies the code.
- This fixes a longstanding bug where we did not properly create new SSA
values on merging control flow (the MachineVerifier missed most of
these cases).
- Move constructMainRangeFromSubranges() to LiveIntervalAnalysis and
LiveRangeCalc to better match the implementation/available helper
functions.
This re-applies r269016. The fixes from r270290 and r270259 should avoid
the machine verifier problems this time.
llvm-svn: 270291
We now use LiveRangeCalc::extendToUses() instead of a specially designed
algorithm in constructMainRangeFromSubranges():
- The original motivation for constructMainRangeFromSubranges() were
differences between the main liverange and subranges because of hidden
dead definitions. This case however cannot happen anymore with the
DetectDeadLaneMasks pass in place.
- It simplifies the code.
- This fixes a longstanding bug where we did not properly create new SSA
values on merging control flow (the MachineVerifier missed most of
these cases).
- Move constructMainRangeFromSubranges() to LiveIntervalAnalysis and
LiveRangeCalc to better match the implementation/available helper
functions.
llvm-svn: 269016
Take MachineInstr by reference instead of by pointer in SlotIndexes and
the SlotIndex wrappers in LiveIntervals. The MachineInstrs here are
never null, so this cleans up the API a bit. It also incidentally
removes a few implicit conversions from MachineInstrBundleIterator to
MachineInstr* (see PR26753).
At a couple of call sites it was convenient to convert to a range-based
for loop over MachineBasicBlock::instr_begin/instr_end, so I added
MachineBasicBlock::instrs.
llvm-svn: 262115
Some subregisters are only to indicate different access sizes, while not
providing any way to actually divide the register up into multiple
disjunct parts. Avoid tracking subregister liveness in these cases as it
is not beneficial.
Differential Revision: http://reviews.llvm.org/D8429
llvm-svn: 232695
Summary:
Letting them begin at the PHI instruction slightly simplifies the code
but more importantly avoids breaking the assumption that live ranges
starting at the block begin are also live at the end of the predecessor
blocks. The MachineVerifier checks that but was apparently never run in
the few instances where liveranges are calculated for machine-SSA
functions.
Reviewers: qcolombet
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7779
llvm-svn: 230093
This function constructs the main liverange by merging all subranges if
subregister liveness tracking is available. This should be slightly
faster to compute instead of performing the liveness calculation again
for the main range. More importantly it avoids cases where the main
liverange would cover positions where no subrange was live. These cases
happened for partial definitions where the actual defined part was dead
and only the undefined parts used later.
The register coalescing requires that every part covered by the main
live range has at least one subrange live.
I also expect this function to become usefull later for places where the
subranges are modified in a way that it is hard to correctly fix the
main liverange in the machine scheduler, we can simply reconstruct it
from subranges then.
llvm-svn: 224806
This changes subrange calculation to calculate subranges sequentially
instead of in parallel. The code is easier to understand that way and
addresses the code review issues raised about LiveOutData being
hard to understand/needing more comments by removing them :)
llvm-svn: 224313
This changes subrange calculation to calculate subranges sequentially
instead of in parallel. The code is easier to understand that way and
addresses the code review issues raised about LiveOutData being
hard to understand/needing more comments by removing them :)
llvm-svn: 224272
define below all header includes in the lib/CodeGen/... tree. While the
current modules implementation doesn't check for this kind of ODR
violation yet, it is likely to grow support for it in the future. It
also removes one layer of macro pollution across all the included
headers.
Other sub-trees will follow.
llvm-svn: 206837
operator* on the by-operand iterators to return a MachineOperand& rather than
a MachineInstr&. At this point they almost behave like normal iterators!
Again, this requires making some existing loops more verbose, but should pave
the way for the big range-based for-loop cleanups in the future.
llvm-svn: 203865
The Segment struct contains a single interval; multiple instances of this struct
are used to construct a live range, but the struct is not a live range by
itself.
llvm-svn: 192392