Summary:
As a consequence, all LSP operations are now handled asynchronously,
i.e. they never block the main processing thread. However, if
-run-synchronously flag is specified, clangd still runs everything on
the main thread.
Reviewers: sammccall, ioeric, hokein
Reviewed By: sammccall, ioeric
Subscribers: klimek, jkorous-apple, cfe-commits
Differential Revision: https://reviews.llvm.org/D43227
llvm-svn: 325233
This is mainly a move of simplifyShuffleOperands from DAGCombiner::visitVECTOR_SHUFFLE to create a more general purpose TargetLowering::SimplifyDemandedVectorElts implementation.
Further features can be moved/added in future patches.
Differential Revision: https://reviews.llvm.org/D42896
llvm-svn: 325232
Analysis of fails in the case of out of memory errors can be tricky on
Windows. Such error emerges at the point where memory allocation function
fails, but manifests itself when null pointer is used. These two points
may be distant from each other. Besides, next runs may not exhibit
allocation error.
Usual programming practice does not require checking result of 'operator
new' because it throws 'std::bad_alloc' in the case of allocation error.
However, LLVM is usually built with exceptions turned off, so 'new' can
return null pointer. This change installs custom new handler, which causes
fatal error in the case of out of memory. The handler is installed
automatically prior to call to 'main' during construction of a static
object defined in 'lib/Support/ErrorHandling.cpp'. If the application does
not use this file, the handler may be installed manually by a call to
'llvm::install_out_of_memory_new_handler', declared in
'include/llvm/Support/ErrorHandling.h".
There are calls to C allocation functions, malloc, calloc and realloc.
They are used for interoperability with C code, when allocated object has
variable size and when it is necessary to avoid call of constructors. In
many calls the result is not checked against null pointer. To simplify
checks, new functions are defined in the namespace 'llvm' with the
same names as these C function. These functions produce fatal error if
allocation fails. User should use 'llvm::malloc' instead of 'std::malloc'
in order to use the safe variant. This change replaces 'std::malloc'
in the cases when the result of allocation function is not checked against
null pointer.
Finally, there are plain C code, that uses malloc and similar functions. If
the result is not checked, assert statements are added.
Differential Revision: https://reviews.llvm.org/D43010
llvm-svn: 325224
Summary:
The chrome trace viewer requires events within a thread to strictly nest.
So we need to record the lifetime of the Span objects, not the contexts.
But we still want to show the relationship between spans where a context crosses
threads, so do this with flow events (i.e. arrows).
Before: https://photos.app.goo.gl/q4Dd9u9xtelaXk1v1
After: https://photos.app.goo.gl/5RNLmAMLZR3unvY83
(This could stand some further improvement, in particular I think we want a
container span whenever we schedule work on a thread. But that's another patch)
Reviewers: ioeric
Subscribers: klimek, ilya-biryukov, jkorous-apple, cfe-commits
Differential Revision: https://reviews.llvm.org/D43272
llvm-svn: 325220
GlobalISel doesn't yet implement blockaddress and falls back to
SelectionDAG. This results in additional branch instruction to
the next basic block which breaks the OMPT tests.
Disable GlobalISel for now when compiling the tests because fixing
them is not easily possible. See http://llvm.org/PR36313 for full
discussion history.
Differential Revision: https://reviews.llvm.org/D43195
llvm-svn: 325218
There is a more powerful but still simple function `isKnownViaSimpleReasoning ` that
does constant range check and few more additional checks. We use it some places (e.g.
when proving implications) and in some other places we only check constant ranges.
Currently, indvar simplifier fails to remove the check in following loop:
int inc = ...;
for (int i = inc, j = inc - 1; i < 200; ++i, ++j)
if (i > j) { ... }
This patch replaces all usages of `isKnownPredicateViaConstantRanges` with
`isKnownViaSimpleReasoning` to have smarter proofs. In particular, it fixes the
case above.
Reviewed-By: sanjoy
Differential Revision: https://reviews.llvm.org/D43175
llvm-svn: 325214
Summary:
Introduce handling of 1200 NetBSD specific ioctl(2) calls.
Over 100 operations are disabled as unavailable or conflicting
with the existing ones (the same operation number).
Add a script that generates the rules to detect ioctls on NetBSD.
The generate_netbsd_ioctls.awk script has been written
in NetBSD awk(1) (patched nawk) and is compatible with gawk.
Generate lib/sanitizer_common/sanitizer_interceptors_ioctl_netbsd.inc
with the awk(1) script.
Update sanitizer_platform_limits_netbsd accordingly to add the needed
definitions.
Sponsored by <The NetBSD Foundation>
Reviewers: joerg, vitalybuka, eugenis, dvyukov
Reviewed By: vitalybuka
Subscribers: kubamracek, llvm-commits, mgorny, fedor.sergeev, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D41636
llvm-svn: 325212
Since r325210, in cfg-temporary-dtors mode, we can rely on the CFG to tell us
that we're indeed constructing a temporary, so we can trivially construct a
temporary region and inline the constructor.
Much like r325202, this is only done under the off-by-default
cfg-temporary-dtors flag because the temporary destructor, even if available,
will not be inlined and won't have the correct object value (target region).
Unless this is fixed, it is quite unsafe to inline the constructor.
If the temporary is lifetime-extended, the destructor would be an automatic
destructor, which would be evaluated with a "correct" target region - modulo
the series of incorrect relocations performed during the lifetime extension.
It means that at least, values within the object are guaranteed to be properly
escaped or invalidated.
Differential Revision: https://reviews.llvm.org/D43062
llvm-svn: 325211
Constructors of C++ temporary objects that have destructors now can be queried
to discover that they're indeed constructing temporary objects.
The respective CXXBindTemporaryExpr, which is also repsonsible for destroying
the temporary at the end of full-expression, is now available at the
construction site in the CFG. This is all the context we need to provide for
temporary objects that are not lifetime extended. For lifetime-extended
temporaries, more context is necessary.
Differential Revision: https://reviews.llvm.org/D43056
llvm-svn: 325210
EvalCallOptions were introduced in r324018 for allowing various parts of
ExprEngine to notify the inlining mechanism, while preparing for evaluating a
function call, of possible difficulties with evaluating the call that they
foresee. Then mayInlineCall() would still be a single place for making the
decision.
Use that mechanism for destructors as well - pass the necessary flags from the
CFG-element-specific destructor handlers.
Part of this patch accidentally leaked into r324018, which led into a change in
tests; this change is reverted now, because even though the change looked
correct, the underlying behavior wasn't. Both of these commits were not intended
to introduce any function changes otherwise.
Differential Revision: https://reviews.llvm.org/D42991
llvm-svn: 325209
Summary:
Implement the skeleton of NetBSD syscall hooks for use with sanitizers.
Add a script that generates the rules to handle syscalls
on NetBSD: generate_netbsd_syscalls.awk. It has been written
in NetBSD awk(1) (patched nawk) and is compatible with gawk.
Generate lib/sanitizer_common/sanitizer_platform_limits_netbsd.h
that is a public header for applications, and included as:
<sanitizer_common/sanitizer_platform_limits_netbsd.h>.
Generate sanitizer_syscalls_netbsd.inc that defines all the
syscall rules for NetBSD. This file is modeled after the Linux
specific file: sanitizer_common_syscalls.inc.
Start recognizing NetBSD syscalls with existing sanitizers:
ASan, ESan, HWASan, TSan, MSan.
Sponsored by <The NetBSD Foundation>
Reviewers: joerg, vitalybuka, kcc, dvyukov, eugenis
Reviewed By: vitalybuka
Subscribers: hintonda, kubamracek, mgorny, llvm-commits, #sanitizers
Tags: #sanitizers
Differential Revision: https://reviews.llvm.org/D42048
llvm-svn: 325206
When we are emitting a relocatable output, we should keep the original
symbol name including "@" part. Previously, we drop that part unconditionally
which resulted in dropping versions from symbols.
Differential Revision: https://reviews.llvm.org/D43307
llvm-svn: 325204
This only affects the cfg-temporary-dtors mode - in this mode we begin inlining
constructors that are constructing function return values. These constructors
have a correct construction context since r324952.
Because temporary destructors are not only never inlined, but also don't have
the correct target region yet, this change is not entirely safe. But this
will be fixed in the subsequent commits, while this stays off behind the
cfg-temporary-dtors flag.
Lifetime extension for return values is still not modeled correctly.
Differential Revision: https://reviews.llvm.org/D42875
llvm-svn: 325202
In CFG, every DeclStmt has exactly one decl, which is always a variable.
It is also pointless to check that the initializer is the constructor because
that's how construction contexts work now.
llvm-svn: 325201
Some ELF files produced by lld may have zero-size segment placeholders as shown
below. Since GNU_STACK Offset is 0, the current code makes it the lowest used
offset, and relocates all the segments over the ELF header. The resulting
binary is total garbage.
This change fixes how llvm-objcopy handles PT_PHDR properlly by treating ELF
headers and the program header table as segments to allow the layout algorithm
decide where those should go.
Author: vit9696
Differential Revision: https://reviews.llvm.org/D42872
llvm-svn: 325189
Summary:
All the tests pass without hitting the situation mentioned in the FIXME, so,
per Aaron Smith's suggestion, this case will now return unconditionally.
Subscribers: sanjoy, mgorny, JDevlieghere
Differential Revision: https://reviews.llvm.org/D43215
llvm-svn: 325188
This patch is related to https://reviews.llvm.org/rC325081
The patch improves documentation for the attribute and removes reference to GCC
documentation.
Patch By: Elizabeth Andrews (eandrews)
Differential Revision: https://reviews.llvm.org/D43321
llvm-svn: 325186
This was causing GCC builds with fail with:
Symbols.h:240:3: error: static assertion failed: Symbol types must be
trivially destructible
static_assert(std::is_trivially_destructible<T>(
The reason this is a gcc-only failure is that OptionalStorage has
as specialization for POD types that isn't built under GCC.
Differential Revision: https://reviews.llvm.org/D43317
llvm-svn: 325185
Summary:
TypeID summaries are used by CFI and need to be serialized by ThinLTO
indexing for later use by LTO Backend.
Reviewers: tejohnson, pcc
Subscribers: mehdi_amini, inglorion, eraman, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D42611
llvm-svn: 325182