This is intended to help support the idiom of a class that has some
other objects (or multiple arrays of different types of objects)
appended on the end, which is used quite heavily in clang.
Differential Revision: http://reviews.llvm.org/D11272
llvm-svn: 244164
Summary:
Emit both DWARF and CodeView if "CodeView" and "Dwarf Version" module
flags are set.
Reviewers: majnemer
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11756
llvm-svn: 244158
As documented in the LLVM Coding Standards, indeed MSVC incorrectly asserts
on this in Debug mode. This happens when building clang with Visual C++ and
-triple i686-pc-windows-gnu on these clang regression tests:
clang/test/CodeGen/2011-03-08-ZeroFieldUnionInitializer.c
clang/test/CodeGen/empty-union-init.c
llvm-svn: 243996
This change was done as an audit and is by inspection. The new EH
system is still very much a work in progress. NFC for the landingpad
case.
llvm-svn: 243965
Summary: This patch adds enum value for an existing metadata type -- make.implicit. Using preassigned enum will be helpful to get compile time type checking and avoid string construction and comparison. The patch also changes uses of make.implicit from string metadata to enum metadata. There is no functionality change.
Reviewers: reames
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11698
llvm-svn: 243954
contained types into the space when we have no contained types. This
fixes the UB stemming from a call to memcpy with a null pointer. This
also reduces the calls to allocate because this actually happens in
a notable client - Clang.
Found by UBSan.
llvm-svn: 243944
Since r241097, `DIBuilder` has only created distinct `DICompileUnit`s.
The backend is liable to start relying on that (if it hasn't already),
so make uniquable `DICompileUnit`s illegal and automatically upgrade old
bitcode. This is a nice cleanup, since we can remove an unnecessary
`DenseSet` (and the associated uniquing info) from `LLVMContextImpl`.
Almost all the testcases were updated with this script:
git grep -e '= !DICompileUnit' -l -- test |
grep -v test/Bitcode |
xargs sed -i '' -e 's,= !DICompileUnit,= distinct !DICompileUnit,'
I imagine something similar should work for out-of-tree testcases.
llvm-svn: 243885
Remove the fake `DW_TAG_auto_variable` and `DW_TAG_arg_variable` tags,
using `DW_TAG_variable` in their place Stop exposing the `tag:` field at
all in the assembly format for `DILocalVariable`.
Most of the testcase updates were generated by the following sed script:
find test/ -name "*.ll" -o -name "*.mir" |
xargs grep -l 'DILocalVariable' |
xargs sed -i '' \
-e 's/tag: DW_TAG_arg_variable, //' \
-e 's/tag: DW_TAG_auto_variable, //'
There were only a handful of tests in `test/Assembly` that I needed to
update by hand.
(Note: a follow-up could change `DILocalVariable::DILocalVariable()` to
set the tag to `DW_TAG_formal_parameter` instead of `DW_TAG_variable`
(as appropriate), instead of having that logic magically in the backend
in `DbgVariable`. I've added a FIXME to that effect.)
llvm-svn: 243774
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Differential Revision: http://reviews.llvm.org/D11097
llvm-svn: 243766
Replace the general `createLocalVariable()` with two more specific
functions: `createParameterVariable()` and `createAutoVariable()`, and
rewrite the documentation.
Besides cleaning up the API, this avoids exposing the fake DWARF tags
`DW_TAG_arg_variable` and `DW_TAG_auto_variable` to frontends, and is
preparation for removing them completely.
llvm-svn: 243764
Summary:
As added initially, statepoints required their call targets to be a
constant pointer null if ``numPatchBytes`` was non-zero. This turns out
to be a problem ergonomically, since there is no way to mark patchable
statepoints as calling a (readable) symbolic value.
This change remove the restriction of requiring ``null`` call targets
for patchable statepoints, and changes PlaceSafepoints to maintain the
symbolic call target through its transformation.
Reviewers: reames, swaroop.sridhar
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11550
llvm-svn: 243502
As a stop-gap, retrieving the InlineAsm's function type was done via the
pointee type of its (pointer) Value type.
Instead, pass down and store the FunctionType in the InlineAsm object.
The only wrinkle with this is the ConstantUniqueMap, which then needs to
ferry the FunctionType down through the InlineAsmKeyType. This could be
done a bit differently if the ConstantInfo trait were broadened a bit to
provide an extension point for access to the TypeClass object from the
ValType objects, so that the ConstantUniqueMap<InlineAsm> would then be
keyed on FunctionTypes instead of PointerTypes that point to
FunctionTypes.
This drops the number of IR tests that don't roundtrip through bitcode*
without calling PointerType::getElementType from 416 to 8 (out of
10733). 3 of those crash when roundtripping at ToT anyway.
* modulo various unavoidable uses of pointer types when validating IR
(for now) and in the way globals are parsed, unfortunately. These
cases will either go away (because such validation will no longer be
necessary or possible when pointee types are opaque), or have to be
made simultaneously with the removal of pointee types.
llvm-svn: 243356
This commit publicly exposes the method 'getLocalSlot' in the
'ModuleSlotTracker' class.
This change is useful for MIR serialization, to serialize the unnamed basic
block and unnamed alloca references.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 243336
This reverts commit r243135.
Feedback from Craig Topper and David Blaikie was that we don't put const on Type as it has no mutable state.
llvm-svn: 243283
Add a verifier check that `DILocalVariable`s of tag
`DW_TAG_arg_variable` always have a non-zero 'arg:' field, and those of
tag `DW_TAG_auto_variable` always have a zero 'arg:' field. These are
the only configurations that are properly understood by the backend.
(Also, fix the bad examples in LangRef and test/Assembler, and fix the
bug in Kaleidoscope Ch8.)
A large number of testcases seem to have bitrotted their way forward
from some ancient version of the debug info hierarchy that didn't have
`arg:` parameters. If you have out-of-tree testcases that start failing
in the verifier and you don't care enough to get the `arg:` right, you
may have some luck just calling:
sed -e 's/, arg: 0/, arg: 1/'
or some such, but I hand-updated the ones in tree.
llvm-svn: 243183
Instead of the pattern
for (auto I = x.rbegin(), E = x.end(); I != E; ++I)
we can use make_range to construct the reverse range and iterate using
that instead.
llvm-svn: 243163
Remove unnecessary and confusing common base class for `DICompositeType`
and `DISubroutineType`.
While at a high-level `DISubroutineType` is a sort of composite of other
types, it has no shared code paths, and its fields are completely
disjoint. This relationship was left over from the old debug info
hierarchy.
llvm-svn: 243160
Handle `DISubroutineType` up-front rather than as part of a branch for
`DICompositeTypeBase`. The only shared code path was looking through
the base type, but `DISubroutineType` can never have a base type.
This also removes the last use of `DICompositeTypeBase`, since we can
strengthen the cast to `DICompositeType`.
llvm-svn: 243159
Remove an unnecessary (and confusing) common subclass for
`DIDerivedType` and `DICompositeType`. These classes aren't really
related, and even in the old debug info hierarchy, there was a
long-standing FIXME to separate them.
llvm-svn: 243152
We really only want to check this for unions and classes (all the other
tags have been ruled out), so simplify the check and move it to the
right place.
llvm-svn: 243150
Remove unnecessary references to `DW_TAG_subroutine_type` in
`visitDICompositeType()` and `visitDIDerivedTypeBase()`, since
`visitDISubroutineType()` doesn't call either of those (and shouldn't,
since subroutine types are really quite special).
llvm-svn: 243149
The surrounding code proves in both cases that these must be
`DIDerivedType` if they're `DIDerivedTypeBase`, so strengthen the
`dyn_cast`s to the more specific type.
llvm-svn: 243143
Almost all methods in DataLayout took mutable pointers but didn't need to.
These were only accessing constant methods of the types, or using the Type*
to key a map. Neither of these needs a mutable pointer.
llvm-svn: 243135
This commit extracts the code that prints out a name of an LLVM value without a
prefix from a function 'PrintLLVMName' into a publicly accessible function named
'printLLVMNameWithoutPrefix'.
This change would be useful for MIR serialization, as it would allow the MIR
printer to reuse this function to print out the names of the external symbol
machine operands.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 242803
Revert the changes to the C API LLVMBuildLandingPad that were part of
the personality function move. We now set the personality on the parent
function when the C API attempts to construct a landingpad with a
personality.
This reverts commit r240010.
llvm-svn: 242372
This is a necessary prerequisite for bootstrapping the emission
of debug info inside modules.
- Adds a FlagExternalTypeRef to DICompositeType.
External types must have a unique identifier.
- External type references are emitted using a forward declaration
with a DW_AT_signature([DW_FORM_ref_sig8]) based on the UID.
http://reviews.llvm.org/D9612
llvm-svn: 242302
Summary:
The capability was lost with D10429 where the personality function was set at function level rather than landing pad level. Now there is no way to get/set the personality function from the C API. That is a problem.
Note that the whole thing could be avoided by improving the C API testing, as started by D10725
Reviewers: chandlerc, bogner, majnemer, andrew.w.kaylor, rafael, rnk, axw
Subscribers: rafael, llvm-commits
Differential Revision: http://reviews.llvm.org/D10946
llvm-svn: 242104
This change adds new attribute called "argmemonly". Function marked with this attribute can only access memory through it's argument pointers. This attribute directly corresponds to the "OnlyAccessesArgumentPointees" ModRef behaviour in alias analysis.
Differential Revision: http://reviews.llvm.org/D10398
llvm-svn: 241979
Summary:
This introduces new instructions neccessary to implement MSVC-compatible
exception handling support. Most of the middle-end and none of the
back-end haven't been audited or updated to take them into account.
Reviewers: rnk, JosephTremoulet, reames, nlewycky, rjmccall
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11041
llvm-svn: 241888
The justification of this change is here: http://lists.cs.uiuc.edu/pipermail/llvmdev/2015-March/082989.html
According to the current GEP syntax, vector GEP requires that each index must be a vector with the same number of elements.
%A = getelementptr i8, <4 x i8*> %ptrs, <4 x i64> %offsets
In this implementation I let each index be or vector or scalar. All vector indices must have the same number of elements. The scalar value will mean the splat vector value.
(1) %A = getelementptr i8, i8* %ptr, <4 x i64> %offsets
or
(2) %A = getelementptr i8, <4 x i8*> %ptrs, i64 %offset
In all cases the %A type is <4 x i8*>
In the case (2) we add the same offset to all pointers.
The case (1) covers C[B[i]] case, when we have the same base C and different offsets B[i].
The documentation is updated.
http://reviews.llvm.org/D10496
llvm-svn: 241788
Summary:
Initially, these intrinsics seemed like part of a family of "frame"
related intrinsics, but now I think that's more confusing than helpful.
Initially, the LangRef specified that this would create a new kind of
allocation that would be allocated at a fixed offset from the frame
pointer (EBP/RBP). We ended up dropping that design, and leaving the
stack frame layout alone.
These intrinsics are really about sharing local stack allocations, not
frame pointers. I intend to go further and add an `llvm.localaddress()`
intrinsic that returns whatever register (EBP, ESI, ESP, RBX) is being
used to address locals, which should not be confused with the frame
pointer.
Naming suggestions at this point are welcome, I'm happy to re-run sed.
Reviewers: majnemer, nicholas
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D11011
llvm-svn: 241633
This reverts commit r241602. We had a latent bug in SCCP where we would
make a basic block empty and then proceed to ask questions about it's
terminator.
llvm-svn: 241616
getFirstNonPHI's documentation states that it returns null if there is
no non-PHI instruction. However, it instead returns a pointer to the
end iterator. The implementation of getFirstNonPHI claims that
dereferencing the iterator will result in an assertion failure but this
doesn't occur. Instead, machinery like getFirstInsertionPt will attempt
to isa<> this invalid memory which results in unpredictable behavior.
Instead, make getFirst* return null if no such instruction exists.
llvm-svn: 241570
Summary:
Looking at r241279, I noticed that UpgradedIntrinsics only gets written
to in the following code:
if (UpgradeIntrinsicFunction(&F, NewFn))
UpgradedIntrinsics[&F] = NewFn;
Looking through UpgradeIntrinsicFunction, we always return false OR
NewFn will be set to a different function from our source.
This patch pulls the F != NewFn into UpgradeIntrinsicFunction as an
assert, and removes the check from callers of UpgradeIntrinsicFunction.
Reviewers: rafael, chandlerc
Subscribers: llvm-commits-list
Differential Revision: http://reviews.llvm.org/D10915
llvm-svn: 241369
It is meant to be used to record modules @imported by the current
compile unit, so a debugger an import the same modules to replicate this
environment before dropping into the expression evaluator.
DIModule is a sibling to DINamespace and behaves quite similarly.
In addition to the name of the module it also records the module
configuration details that are necessary to uniquely identify the module.
This includes the configuration macros (e.g., -DNDEBUG), the include path
where the module.map file is to be found, and the isysroot.
The idea is that the backend will turn this into a DW_TAG_module.
http://reviews.llvm.org/D9614
rdar://problem/20965932
llvm-svn: 241017
Allow callers of `Value::print()` and `Metadata::print()` to pass in a
`ModuleSlotTracker`. This allows them to pay only once for calculating
module-level slots (such as Metadata).
This is related to PR23865, where there was a huge cost for
`MachineFunction::print()`. Although I don't have a *particular* user
in mind for this new code, I have hit big slowdowns before when running
`opt -debug`, and I think this will be useful. Going forward, if
someone hits a big slowdown with `print()` statements, they can create a
`ModuleSlotTracker` and send it through. Similarly, adding support to
`Value::dump()` and `Metadata::dump()` should be trivial.
I added unit tests to be sure the `print()` functions actually behave
the same way with and without the slot tracker.
llvm-svn: 240867
For another 1% speedup on the testcase in PR23865, push the
`ModuleSlotTracker` through to metadata-related printing in
`MachineBasicBlock::print()`.
llvm-svn: 240848
Expose enough of the IR-level `SlotTracker` so that
`MachineFunction::print()` can use a single one for printing
`BasicBlock`s. Next step would be to lift this through a few more APIs
so that we can make other print methods faster.
Fixes PR23865, changing the runtime of `llc -print-machineinstrs` from
many minutes (killed after 3 minutes, but it wasn't very close) to
13 seconds for a 502185 line dump.
llvm-svn: 240842
We support invoking a subset of llvm's intrinsics, but the verifier didn't account for this. We had previously added a special case to verify invokes of statepoints. By generalizing the code in terms of CallSite, we can verify invokes of other intrinsics as well. Interestingly, this found one test case which was invalid.
Note: I'm deliberately leaving the naming change from CI to CS to a follow up change. That will happen shortly, I just wanted to reduce the diff to make it clear what was happening with this one.
Differential Revision: http://reviews.llvm.org/D10118
llvm-svn: 240836
This is part of the work to devirtualize Value.
The old pattern was to call replaceUsesOfWithOnConstant which was overridden by
subclasses. Those could then call replaceUsesOfWithOnConstantImpl on Constant
to handle deleting the current value.
To be consistent with other parts of the code, this has been changed so that we
call the method on Constant, and that dispatches to an Impl on subclasses.
As part of this, it made sense to rename the methods to be more descriptive. The
new name is Constant::handleOperandChange, and it requires that all subclasses of
Constant implement handleOperandChangeImpl, even if they just throw an error if
they shouldn't be called.
Reviewed by Duncan Exon Smith.
llvm-svn: 240567
The only caller of this method is Value::replaceAllUsesWith which
explicitly checks that we are not a GlobalValue. So replace the
body with an unreachable to ensure that we never call it.
The unreachable itself is moved to GlobalValue not GlobalVariable
as that is the base class of all the globals we don't want to call
this method on.
Note, this patch is short lived as i'll soon refactor all callers
of this method.
llvm-svn: 240486
This reorganizes destroyConstant and destroyConstantImpl.
Now there is only destroyConstant in Constant itself, while
subclasses are required to implement destroyConstantImpl.
destroyConstantImpl no longer calls delete but is instead only
responsible for removing the constant from any maps in which it
is contained.
Reviewed by Duncan Exon Smith.
llvm-svn: 240471
The summary is that it moves the mangling earlier and replaces a few
calls to .addExternalSymbol with addSym.
I originally wanted to replace all the uses of addExternalSymbol with
addSym, but noticed it was a lot of work and doesn't need to be done
all at once.
llvm-svn: 240395
The patch is generated using this command:
tools/clang/tools/extra/clang-tidy/tool/run-clang-tidy.py -fix \
-checks=-*,llvm-namespace-comment -header-filter='llvm/.*|clang/.*' \
llvm/lib/
Thanks to Eugene Kosov for the original patch!
llvm-svn: 240137
Summary:
Currently intrinsics don't affect the creation of the call graph.
This is not accurate with respect to statepoint and patchpoint
intrinsics -- these do call (or invoke) LLVM level functions.
This change fixes this inconsistency by adding a call to the external
node for call sites that call these non-leaf intrinsics. This coupled
with the fact that these intrinsics also escape the function pointer
they call gives us a conservatively correct call graph.
Reviewers: reames, chandlerc, atrick, pgavlin
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10526
llvm-svn: 240039
The personality routine currently lives in the LandingPadInst.
This isn't desirable because:
- All LandingPadInsts in the same function must have the same
personality routine. This means that each LandingPadInst beyond the
first has an operand which produces no additional information.
- There is ongoing work to introduce EH IR constructs other than
LandingPadInst. Moving the personality routine off of any one
particular Instruction and onto the parent function seems a lot better
than have N different places a personality function can sneak onto an
exceptional function.
Differential Revision: http://reviews.llvm.org/D10429
llvm-svn: 239940
If globals can be unnamed, there is no reason for aliases to be different.
The restriction was there since the original implementation in r36435. I
can only guess it was there because of the old bison parser for the old
alias syntax.
llvm-svn: 239921
Adds static_asserts to ensure alignment of concatenated objects is
correct, and fixes them where they are not.
Also changes the definition of AlignOf to use constexpr, except on
MSVC, to avoid enum comparison warnings from GCC.
(There's not too much of this in llvm itself, most of the fun is in
clang).
This seems to make LLVM actually work without Bus Error on 32bit
sparc.
Differential Revision: http://reviews.llvm.org/D10271
llvm-svn: 239872
This patch adds the safe stack instrumentation pass to LLVM, which separates
the program stack into a safe stack, which stores return addresses, register
spills, and local variables that are statically verified to be accessed
in a safe way, and the unsafe stack, which stores everything else. Such
separation makes it much harder for an attacker to corrupt objects on the
safe stack, including function pointers stored in spilled registers and
return addresses. You can find more information about the safe stack, as
well as other parts of or control-flow hijack protection technique in our
OSDI paper on code-pointer integrity (http://dslab.epfl.ch/pubs/cpi.pdf)
and our project website (http://levee.epfl.ch).
The overhead of our implementation of the safe stack is very close to zero
(0.01% on the Phoronix benchmarks). This is lower than the overhead of
stack cookies, which are supported by LLVM and are commonly used today,
yet the security guarantees of the safe stack are strictly stronger than
stack cookies. In some cases, the safe stack improves performance due to
better cache locality.
Our current implementation of the safe stack is stable and robust, we
used it to recompile multiple projects on Linux including Chromium, and
we also recompiled the entire FreeBSD user-space system and more than 100
packages. We ran unit tests on the FreeBSD system and many of the packages
and observed no errors caused by the safe stack. The safe stack is also fully
binary compatible with non-instrumented code and can be applied to parts of
a program selectively.
This patch is our implementation of the safe stack on top of LLVM. The
patches make the following changes:
- Add the safestack function attribute, similar to the ssp, sspstrong and
sspreq attributes.
- Add the SafeStack instrumentation pass that applies the safe stack to all
functions that have the safestack attribute. This pass moves all unsafe local
variables to the unsafe stack with a separate stack pointer, whereas all
safe variables remain on the regular stack that is managed by LLVM as usual.
- Invoke the pass as the last stage before code generation (at the same time
the existing cookie-based stack protector pass is invoked).
- Add unit tests for the safe stack.
Original patch by Volodymyr Kuznetsov and others at the Dependable Systems
Lab at EPFL; updates and upstreaming by myself.
Differential Revision: http://reviews.llvm.org/D6094
llvm-svn: 239761
This commit connects the machine function analysis pass (which creates machine
functions) to the MIR parser, which will initialize the machine functions
with the state from the MIR file and reconstruct the machine IR.
This commit introduces a new interface called 'MachineFunctionInitializer',
which can be used to provide custom initialization for the machine functions.
This commit also introduces a new diagnostic class called
'DiagnosticInfoMIRParser' which is used for MIR parsing errors.
This commit modifies the default diagnostic handling in LLVMContext - now the
the diagnostics are printed directly into llvm::errs() so that the MIR parsing
errors can be printed with colours.
Reviewers: Justin Bogner
Differential Revision: http://reviews.llvm.org/D9928
llvm-svn: 239753
In the glorious future of opaque pointer types, it won't be possible to
retrieve the pointee type of a pointer type which is what's being done
in this GEP loop - but the first iteration is always a pointer type and
the loop doesn't care about that case, except whether or not the index
is a constant.
So pull that special case out before the loop and start at the second
iteration (index 1) instead.
Originally committed in r236670 and reverted with a test case in
r239015. This change keeps the test case working while also avoiding
depending on pointee types.
llvm-svn: 239629
For hung off uses, we need a Use* to tell use where the operands are.
This was User::OperandList but we want to remove that to save space
of all subclasses which aren't making use of 'hung off uses'.
Hung off uses now allocate their own 'OperandList' Use* in the
User::new which they call.
getOperandList() now uses the hung off uses bit to work out where the
Use* for the OperandList lives. If a User has hung off uses, then this
bit tells them to go back a single Use* from the User* and use that
value as the OperandList.
If a User has no hung off uses, then we get the first operand by
subtracting (NumOperands * sizeof(Use)) from the User this pointer.
This saves a pointer from User and all subclasses. Given the average
size of a subclass of User is 112 or 128 bytes, this saves around 7% of space
With malloc tending to align to 16-bytes the real saving is typically more like 3.5%.
On 'opt -O2 verify-uselistorder.lto.bc', peak memory usage prior to this change
is 149MB and after is 143MB so the savings are around 2.5% of peak.
Looking at some passes which allocate many Instructions and Values, parseIR drops
from 54.25MB to 52.21MB while the Inliner calls to Instruction::clone() drops
from 28.20MB to 27.05MB.
Reviewed by Duncan Exon Smith.
llvm-svn: 239623
There are now 2 versions of User::new. The first takes a size_t and is the current
implementation for subclasses which need 0 or more Use's allocated for their operands.
The new version takes no extra arguments to say that this subclass needs 'hung off uses'.
The HungOffUses bool is now set in this version of User::new and we can assert in
allocHungOffUses that we are allowed to have hung off uses.
This ensures we call the correct version of User::new for subclasses which need hung off uses.
A future commit will then allocate space for a single Use* which will be used
in place of User::OperandList once that field has been removed.
Reviewed by Duncan Exon Smith.
llvm-svn: 239622
This is to try make it very clear that subclasses shouldn't be changing
the value directly. Now that OperandList for normal instructions is computed
using the NumOperands, its critical that the NumOperands is accurate or we
could compute the wrong offset to the first operand.
I looked over all places which update NumOperands and they are all safe.
Hung off use User's don't use NumOperands to compute the OperandList so they
are safe to continue to manipulate it. The only other User which changed it
was GlobalVariable which has an optional init list but always allocated space
for a single Use. It was correctly setting NumOperands to 1 before setting an
initializer, and setting it to 0 after clearing the init list, so the order was safe.
Added some comments to that code to make sure that this isn't changed in future
without being aware of this constraint.
Reviewed by Duncan Exon Smith.
llvm-svn: 239621
We don't want anyone to access OperandList directly as its going to be removed
and computed instead. This uses getter's and setter's instead in which we
can later change the underlying implementation of OperandList.
Reviewed by Duncan Exon Smith.
llvm-svn: 239620
This improves debug locations in passes that do a lot of basic block
transformations. Important case is LoopUnroll pass, the test for correct
debug locations accompanies this change.
Test Plan: regression test suite
Reviewers: dblaikie, sanjoy
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10367
llvm-svn: 239551
This reverts commit r239437.
This broke clang-cl self-hosts. We'd end up calling the __imp_ symbol
directly instead of using it to do an indirect function call.
llvm-svn: 239502
PhiNode, SwitchInst, LandingPad and IndirectBr all had virtually identical
logic for growing the hung off uses.
Move it to User so that they can all call a single shared implementation.
Their destructors were all empty after this change and were deleted. They all
have virtual clone_impl methods which can be used as vtable anchors.
Reviewed by Duncan Exon Smith.
llvm-svn: 239492