This mirrors the behavior of APInt::udiv and APInt::urem. Some
architectures, like X86, have a single instruction which can compute
both division and remainder.
llvm-svn: 224217
We have a transform that changes:
(x lshr C1) udiv C2
into:
x udiv (C2 << C1)
However, it is unsafe to do so if C2 << C1 discards any of C2's bits.
This fixes PR21255.
llvm-svn: 219634
Sooooo many of these had incorrect or strange main module includes.
I have manually inspected all of these, and fixed the main module
include to be the nearest plausible thing I could find. If you own or
care about any of these source files, I encourage you to take some time
and check that these edits were sensible. I can't have broken anything
(I strictly added headers, and reordered them, never removed), but they
may not be the headers you'd really like to identify as containing the
API being implemented.
Many forward declarations and missing includes were added to a header
files to allow them to parse cleanly when included first. The main
module rule does in fact have its merits. =]
llvm-svn: 169131
new hash_value infrastructure, and replace their implementations using
hash_combine. This removes a complete copy of Jenkin's lookup3 hash
function (which is both significantly slower and lower quality than the
one implemented in hash_combine) along with a somewhat scary xor-only
hash function.
Now that APInt and APFloat can be passed directly to hash_combine,
simplify the rest of the LLVMContextImpl hashing to use the new
infrastructure.
llvm-svn: 152004
toString() now takes an optional bool argument that,
depending on the radix, adds the appropriate prefix
to the integer's string representation that makes it into a
meaningful C literal, e.g.:
hexademical: '-f' becomes '-0xf'
octal: '77' becomes '077'
binary: '110' becomes '0b110'
Patch by nobled@dreamwidth.org!
llvm-svn: 133032
of a constant had a minor typo introduced when copying it from the book, which
caused it to favor negative approximations over positive approximations in many
cases. Positive approximations require fewer operations beyond the multiplication.
In the case of division by 3, we still generate code that is a single instruction
larger than GCC's code.
llvm-svn: 126097
zextOrTrunc(), and APSInt methods extend(), extOrTrunc() and new method
trunc(), to be const and to return a new value instead of modifying the
object in place.
llvm-svn: 121120
logic to use the new APInt methods. Among other things this
implements rdar://8501501 - llvm.smul.with.overflow.i32 should constant fold
which comes from "clang -ftrapv", originally brought to my attention from PR8221.
llvm-svn: 116457