This change refactors and cleans up our handling of name lookup with
LookupDecl. There are several aspects to this refactoring:
- The criteria for name lookup is now encapsulated into the class
LookupCriteria, which replaces the hideous set of boolean values
that LookupDecl currently has.
- The results of name lookup are returned in a new class
LookupResult, which can lazily build OverloadedFunctionDecls for
overloaded function sets (and, eventually, eliminate the need to
allocate member for OverloadedFunctionDecls) and contains a
placeholder for handling ambiguous name lookup (for C++).
- The primary entry points for name lookup are now LookupName (for
unqualified name lookup) and LookupQualifiedName (for qualified
name lookup). There is also a convenience function
LookupParsedName that handles qualified/unqualified name lookup
when given a scope specifier. Together, these routines are meant
to gradually replace the kludgy LookupDecl, but this won't happen
until after we have base class lookup (which forces us to cope
with ambiguities).
- Documented the heck out of name lookup. Experimenting a little
with using Doxygen's member groups to make some sense of the Sema
class. Feedback welcome!
- Fixes some lingering issues with name lookup for
nested-name-specifiers, which now goes through
LookupName/LookupQualifiedName.
llvm-svn: 62245
Small cleanup in the handling of user-defined conversions.
Also, implement an optimization when constructing a call. We avoid
recomputing implicit conversion sequences and instead use those
conversion sequences that we computed as part of overload resolution.
llvm-svn: 62231
C++ handle anonymous structs/unions in the same way. Addresses several
bugs:
<rdar://problem/6259534>
<rdar://problem/6481130>
<rdar://problem/6483159>
The test case in PR clang/1750 now passes with -fsyntax-only, but
CodeGen for inline assembler still fails.
llvm-svn: 62112
or enum to be outside that struct, union, or enum. Fixes several
regressions:
<rdar://problem/6487662>
<rdar://problem/6487669>
<rdar://problem/6487684>
<rdar://problem/6487702>
PR clang/3305
PR clang/3312
There is still some work to do in Objective-C++, but this requires
that each of the Objective-C entities (interfaces, implementations,
etc.) to be introduced into the context stack with
PushDeclContext/PopDeclContext. This will be a separate fix, later.
llvm-svn: 62091
that is neither a definition nor a forward declaration and where X has
not yet been declared as a tag, introduce a declaration
into the appropriate scope (which is likely *not* to be the current
scope). The rules for the placement of the declaration differ slightly
in C and C++, so we implement both and test the various corner
cases. This implementation isn't 100% correct due to some lingering
issues with the function prototype scope (for a function parameter
list) not being the same scope as the scope of the function
definition. Testcase is FIXME'd; this probably isn't an important issue.
Addresses <rdar://problem/6484805>.
llvm-svn: 62014
of ScopedDecls (using the new ScopedDecl::NextDeclInScope
pointer). Performance-wise:
- It's a net win in memory utilization, since DeclContext is now one
pointer smaller than it used to be (std::vectors are typically 3
pointers; we now use 2 pointers) and
- Parsing Cocoa.h with -fsyntax-only (with a Release-Asserts Clang)
is about 1.9% faster than before, most likely because we no longer
have the memory allocations and copying associated with the
std::vector.
I'll re-enable serialization of DeclContexts once I've sorted out the
NextDeclarator/NextDeclInScope question.
llvm-svn: 62001
introduce a Scope for the body of a tag. This reduces the number of
semantic differences between C and C++ structs and unions, and will
help with other features (e.g., anonymous unions) in C. Some important
points:
- Fields are now in the "member" namespace (IDNS_Member), to keep
them separate from tags and ordinary names in C. See the new test
in Sema/member-reference.c for an example of why this matters. In
C++, ordinary and member name lookup will find members in both the
ordinary and member namespace, so the difference between
IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but
only in C++!).
- We always introduce a Scope and push a DeclContext when we're
defining a tag, in both C and C++. Previously, we had different
actions and different Scope/CurContext behavior for enums, C
structs/unions, and C++ structs/unions/classes. Now, it's one pair
of actions. (Yay!)
There's still some fuzziness in the handling of struct/union/enum
definitions within other struct/union/enum definitions in C. We'll
need to do some more cleanup to eliminate some reliance on CurContext
before we can solve this issue for real. What we want is for something
like this:
struct X {
struct T { int x; } t;
};
to introduce T into translation unit scope (placing it at the
appropriate point in the IdentifierResolver chain, too), but it should
still have struct X as its lexical declaration
context. PushOnScopeChains isn't smart enough to do that yet, though,
so there's a FIXME test in nested-redef.c
llvm-svn: 61940
- ObjCContainerDecl's (ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl), ObjCCategoryImpl, & ObjCImplementation are all DeclContexts.
- ObjCMethodDecl is now a ScopedDecl (so it can play nicely with DeclContext).
- ObjCContainerDecl now does iteration/lookup using DeclContext infrastructure (no more linear search:-)
- Removed ASTContext argument to DeclContext::lookup(). It wasn't being used and complicated it's use from an ObjC AST perspective.
- Added Sema::ProcessPropertyDecl() and removed Sema::diagnosePropertySetterGetterMismatch().
- Simplified Sema::ActOnAtEnd() considerably. Still more work to do.
- Fixed an incorrect casting assumption in Sema::getCurFunctionOrMethodDecl(), now that ObjCMethodDecl is a ScopedDecl.
- Removed addPropertyMethods from ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl.
This passes all the tests on my machine. Since many of the changes are central to the way ObjC finds it's methods, I expect some fallout (and there are still a handful of FIXME's). Nevertheless, this should be a step in the right direction.
llvm-svn: 61929
Duplicate-member checking within classes is still a little messy, and
anonymous unions are still completely broken in C. We'll need to unify
the handling of fields in C and C++ to make this code applicable in
both languages.
llvm-svn: 61878
structures and classes) in C++. Covers name lookup and the synthesis
and member access for the unnamed objects/fields associated with
anonymous unions.
Some C++ semantic checks are still missing (anonymous unions can't
have function members, static data members, etc.), and there is no
support for anonymous structs or unions in C.
llvm-svn: 61840
information for declarations that were referenced via a qualified-id,
e.g., N::C::value. We keep track of the location of the start of the
nested-name-specifier. Note that the difference between
QualifiedDeclRefExpr and DeclRefExpr does have an effect on the
semantics of function calls in two ways:
1) The use of a qualified-id instead of an unqualified-id suppresses
argument-dependent lookup
2) If the name refers to a virtual function, the qualified-id
version will call the function determined statically while the
unqualified-id version will call the function determined dynamically
(by looking up the appropriate function in the vtable).
Neither of these features is implemented yet, but we do print out
qualified names for QualifiedDeclRefExprs as part of the AST printing.
llvm-svn: 61789
Make C++ classes track the POD property (C++ [class]p4)
Track the existence of a copy assignment operator.
Implicitly declare the copy assignment operator if none is provided.
Implement most of the parsing job for the G++ type traits extension.
Fully implement the low-hanging fruit of the type traits:
__is_pod: Whether a type is a POD.
__is_class: Whether a type is a (non-union) class.
__is_union: Whether a type is a union.
__is_enum: Whether a type is an enum.
__is_polymorphic: Whether a type is polymorphic (C++ [class.virtual]p1).
llvm-svn: 61746
DeclContexts whose members are visible from enclosing DeclContexts up
to (and including) the innermost enclosing non-transparent
DeclContexts. Transparent DeclContexts unify the mechanism to be used
for various language features, including C enumerations, anonymous
unions, C++0x inline namespaces, and C++ linkage
specifications. Please refer to the documentation in the Clang
internals manual for more information.
Only enumerations and linkage specifications currently use transparent
DeclContexts.
Still to do: use transparent DeclContexts to implement anonymous
unions and GCC's anonymous structs extension, and, later, the C++0x
features. We also need to tighten up the DeclContext/ScopedDecl link
to ensure that every ScopedDecl is in a single DeclContext, which
will ensure that we can then enforce ownership and reduce the memory
footprint of DeclContext.
llvm-svn: 61735
semantics and improve our handling of default arguments. Specifically,
we follow this order:
- As soon as the see the '}' in the class definition, the class is
complete and we add any implicit declarations (default constructor,
copy constructor, etc.) to the class.
- If there are any default function arguments, parse them
- If there were any inline member function definitions, parse them
As part of this change, we now keep track of the the fact that we've
seen unparsed default function arguments within the AST. See the new
ParmVarDecl::hasUnparsedDefaultArg member. This allows us to properly
cope with calls inside default function arguments to other functions
where we're making use of the default arguments.
Made some C++ error messages regarding failed initializations more
specific.
llvm-svn: 61406
attached to an identifier. Instead, all overloaded functions will be
pushed into scope, and we'll synthesize an OverloadedFunctionDecl on
the fly when we need it.
llvm-svn: 61386
DeclContext. Instead, just keep the list of currently-active
declarations and only build the OverloadedFunctionDecl when we
absolutely need it.
This is a half-step toward eliminating the need to explicitly build
OverloadedFunctionDecls that store sets of overloaded
functions. This was suggested by Argiris a while back, and it's a good
thing for several reasons: first, it eliminates the messy logic that
currently tries to keep the OverloadedFunctionDecl in sync with the
declarations that are being added. Second, it will (eventually)
eliminate the need to allocate memory for overload sets, which could
help performance. Finally, it helps set us up for when name lookup can
return multiple (possibly ambiguous) results, as can happen with
lookup of class members in C++.
Next steps: make the IdentifierResolver store overloads as separate
entries in its list rather than replacing them with an
OverloadedFunctionDecl now, then see how far we can go toward
eliminating OverloadedFunctionDecl entirely.
llvm-svn: 61357
is completely defined (C++ [class.mem]p2).
Reverse the order in which we process the definitions of member
functions specified inline. This way, we'll get diagnostics in the
order in which the member functions were declared in the class.
llvm-svn: 61103
specifiers. Specifically:
* Determine when an out-of-line function definition does not match
any declaration within the class or namespace (including coping
with overloaded functions).
* Complain about typedefs and parameters that have scope specifiers.
* Complain about out-of-line declarations that aren't also
definitions.
* Complain about non-static data members being declared out-of-line.
* Allow cv-qualifiers on out-of-line member function definitions.
llvm-svn: 61058
just like all other members, and remove the special variables in
CXXRecordDecl to store them. This eliminates a lot of special-case
code for constructors and destructors, including
ActOnConstructor/ActOnDeclarator and special lookup rules in
LookupDecl. The result is far more uniform and manageable.
Diagnose the redeclaration of member functions.
llvm-svn: 61048