Update a few tests to use llvm.masked.load/store instead of arm neon
vector loads and stores, and move the tests that are actually specific
to those arm intrinsics to their own files. This lets us mark the
tests that use target specific intrinsics as requiring those targets.
llvm-svn: 302972
This is a follow up patch for https://reviews.llvm.org/rL300440
to address a comment.
To make implementation to be consistent with other cases we just
ignore the remainder after distribution of remaining probability between
reachable edges.
If we reduced the probability of some edges coming to unreachable
blocks we should distribute the remaining part across other edges
coming to reachable blocks to satisfy the condition that sum of all
probabilities should be equal to one. If this remaining part is not
divided by number of "reachable" edges then we get this remainder.
This remainder probability should be pretty small. Other cases just ignore
if the sum of probabilities is not equal to one so we do the same.
Reviewers: chandlerc, sanjoy, vsk, junbuml, reames
Reviewed By: reames
Subscribers: reames, llvm-commits
Differential Revision: https://reviews.llvm.org/D32124
llvm-svn: 302883
The AArch64 instruction set has a few "widening" instructions (e.g., uaddl,
saddl, uaddw, etc.) that take one or more doubleword operands and produce
quadword results. The operands are automatically sign- or zero-extended as
appropriate. However, in LLVM IR, these extends are explicit. This patch
updates TTI to consider these widening instructions as single operations whose
cost is attached to the arithmetic instruction. It marks extends that are part
of a widening operation "free" and applies a sub-target specified overhead
(zero by default) to the arithmetic instructions.
Differential Revision: https://reviews.llvm.org/D32706
llvm-svn: 302582
Account for subvector extraction/insertion, helps prevent the vectorizers from selecting 256-bit vectors that will have to be split anyhow on AVX1 targets.
llvm-svn: 302378
Summary:
The existing implementation creates a symbolic SCEV expression every
time we analyze a phi node and then has to remove it, when the analysis
is finished. This is very expensive, and in most of the cases it's also
unnecessary. According to the data I collected, ~60-70% of analyzed phi
nodes (measured on SPEC) have the following form:
PN = phi(Start, OP(Self, Constant))
Handling such cases separately significantly speeds this up.
Reviewers: sanjoy, pete
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D32663
llvm-svn: 302096
Fixes PR31789 - When loop-vectorize tries to use these intrinsics for a
non-default address space pointer we fail with a "Calling a function with a
bad singature!" assertion. This patch solves this by adding the 'vector of
pointers' argument as an overloaded type which will determine the address
space.
Differential revision: https://reviews.llvm.org/D31490
llvm-svn: 302018
In cases where an instruction (a call site, say) is RAUW'ed with some
other value (this is possible via the `returned` attribute, for
instance), we want the slot in UnknownInsts to point to the original
Instruction we wanted to track, not the value it got replaced by.
Fixes PR32587.
This relands r301426.
llvm-svn: 301814
Summary:
programUndefinedIfPoison makes more sense, given what the function
does; and I'm about to add a function with a name similar to
isKnownNotFullPoison (so do the rename to avoid confusion).
Reviewers: broune, majnemer, bjarke.roune
Reviewed By: broune
Subscribers: mcrosier, llvm-commits, mzolotukhin
Differential Revision: https://reviews.llvm.org/D30444
llvm-svn: 301776
Commits were:
"Use WeakVH instead of WeakTrackingVH in AliasSetTracker's UnkownInsts"
"Add a new WeakVH value handle; NFC"
"Rename WeakVH to WeakTrackingVH; NFC"
The changes assumed pointers are 8 byte aligned on all architectures.
llvm-svn: 301429
Summary:
In cases where an instruction (a call site, say) is RAUW'ed with some
other value (this is possible via the `returned` attribute, amongst
other things), we want the slot in UnknownInsts to point to the
original Instruction we wanted to track, not the value it got replaced
by.
Fixes PR32587.
Reviewers: davide
Subscribers: mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D32268
llvm-svn: 301426
Summary:
In a previous change I changed SCEV's normalization / denormalization
to work with non-affine add recs. So the bailout in IVUsers can be
removed.
Reviewers: atrick, efriedma
Reviewed By: atrick
Subscribers: davide, mcrosier, llvm-commits
Differential Revision: https://reviews.llvm.org/D32105
llvm-svn: 301298
There have been multiple reports of this causing problems: a
compile-time explosion on the LLVM testsuite, and a stack
overflow for an opencl kernel.
llvm-svn: 300928
Use haveNoCommonBitsSet to figure out whether an "or" instruction
is equivalent to addition. This handles more cases than just
checking for a constant on the RHS.
Differential Revision: https://reviews.llvm.org/D32239
llvm-svn: 300746
Metadata potentially is more precise than any heuristics we use, so
it makes sense to use first metadata info if it is available. However it makes
sense to examine it against other strong heuristics like unreachable one.
If edge coming to unreachable block has higher probability then it is expected
by unreachable heuristic then we use heuristic and remaining probability is
distributed among other reachable blocks equally.
An example where metadata might be more strong then unreachable heuristic is
as follows: it is possible that there are two branches and for the branch A
metadata says that its probability is (0, 2^25). For the branch B
the probability is (1, 2^25).
So the expectation is that first edge of B is hotter than first edge of A
because first edge of A did not executed at least once.
If first edge of A points to the unreachable block then using the unreachable
heuristics we'll set the probability for A to (1, 2^20) and now edge of A
becomes hotter than edge of B.
This is unexpected behavior.
This fixed the biggest part of https://bugs.llvm.org/show_bug.cgi?id=32214
Reviewers: sanjoy, junbuml, vsk, chandlerc
Reviewed By: chandlerc
Subscribers: llvm-commits, reames, davidxl
Differential Revision: https://reviews.llvm.org/D30631
llvm-svn: 300440
Summary:
* Add a bitreverse case in the demanded bits analysis pass.
* Add tests for the bitreverse (and bswap) intrinsic in the
demanded bits pass.
* Add a test case to the BDCE tests: that manipulations to
high-order bits are eliminated once the bits are reversed
and then right-shifted.
Reviewers: mkuper, jmolloy, hfinkel, trentxintong
Reviewed By: jmolloy
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31857
llvm-svn: 300215
Summary:
Readnone attribute would cause CSE of two barriers with
the same argument, which is invalid by example:
struct Base {
virtual int foo() { return 42; }
};
struct Derived1 : Base {
int foo() override { return 50; }
};
struct Derived2 : Base {
int foo() override { return 100; }
};
void foo() {
Base *x = new Base{};
new (x) Derived1{};
int a = std::launder(x)->foo();
new (x) Derived2{};
int b = std::launder(x)->foo();
}
Here 2 calls of std::launder will produce @llvm.invariant.group.barrier,
which would be merged into one call, causing devirtualization
to devirtualize second call into Derived1::foo() instead of
Derived2::foo()
Reviewers: chandlerc, dberlin, hfinkel
Subscribers: llvm-commits, rsmith, amharc
Differential Revision: https://reviews.llvm.org/D31531
llvm-svn: 300101
getArithmeticInstrCost(), getShuffleCost(), getCastInstrCost(),
getCmpSelInstrCost(), getVectorInstrCost(), getMemoryOpCost(),
getInterleavedMemoryOpCost() implemented.
Interleaved access vectorization enabled.
BasicTTIImpl::getCastInstrCost() improved to check for legal extending loads,
in which case the cost of the z/sext instruction becomes 0.
Review: Ulrich Weigand, Renato Golin.
https://reviews.llvm.org/D29631
llvm-svn: 300052
Collection of PostDominatedByUnreachable and PostDominatedByColdCall have been
split out of heuristics itself. Update of the data happens now for each basic
block (before update for PostDominatedByColdCall might be skipped if
unreachable or matadata heuristic handled this basic block).
This separation allows re-ordering of heuristics without loosing
the post-domination information.
Reviewers: sanjoy, junbuml, vsk, chandlerc, reames
Reviewed By: chandlerc
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D31701
llvm-svn: 300029
Analysis, it has Analysis passes, and once NewGVN is made an Analysis,
this removes the cross dependency from Analysis to Transform/Utils.
NFC.
llvm-svn: 299980
The patch rL298481 was reverted due to crash on clang-with-lto-ubuntu build.
The reason of the crash was type mismatch between either a or b and RHS in the following situation:
LHS = sext(a +nsw b) > RHS.
This is quite rare, but still possible situation. Normally we need to cast all {a, b, RHS} to their widest type.
But we try to avoid creation of new SCEV that are not constants to avoid initiating recursive analysis that
can take a lot of time and/or cache a bad value for iterations number. To deal with this, in this patch we
reject this case and will not try to analyze it if the type of sum doesn't match with the type of RHS. In this
situation we don't need to create any non-constant SCEVs.
This patch also adds an assertion to the method IsProvedViaContext so that we could fail on it and not
go further into range analysis etc (because in some situations these analyzes succeed even when the passed
arguments have wrong types, what should not normally happen).
The patch also contains a fix for a problem with too narrow scope of the analysis caused by wrong
usage of predicates in recursive invocations.
The regression test on the said failure: test/Analysis/ScalarEvolution/implied-via-addition.ll
Reviewers: reames, apilipenko, anna, sanjoy
Reviewed By: sanjoy
Subscribers: mzolotukhin, mehdi_amini, llvm-commits
Differential Revision: https://reviews.llvm.org/D31238
llvm-svn: 299205
The patch rL298481 was reverted due to crash on clang-with-lto-ubuntu build.
The reason of the crash was type mismatch between either a or b and RHS in the following situation:
LHS = sext(a +nsw b) > RHS.
This is quite rare, but still possible situation. Normally we need to cast all {a, b, RHS} to their widest type.
But we try to avoid creation of new SCEV that are not constants to avoid initiating recursive analysis that
can take a lot of time and/or cache a bad value for iterations number. To deal with this, in this patch we
reject this case and will not try to analyze it if the type of sum doesn't match with the type of RHS. In this
situation we don't need to create any non-constant SCEVs.
This patch also adds an assertion to the method IsProvedViaContext so that we could fail on it and not
go further into range analysis etc (because in some situations these analyzes succeed even when the passed
arguments have wrong types, what should not normally happen).
The patch also contains a fix for a problem with too narrow scope of the analysis caused by wrong
usage of predicates in recursive invocations.
The regression test on the said failure: test/Analysis/ScalarEvolution/implied-via-addition.ll
llvm-svn: 298690
Given below case:
%y = shl %x, n
%z = ashr %y, m
when n = m, SCEV models it as sext(trunc(x)). This patch tries to handle
the case where n > m by using sext(mul(trunc(x), 2^(n-m)))) as the SCEV
expression.
llvm-svn: 298631
Summary:
Adding a printer pass for printing the LVI cache values after transformations
that use LVI.
This will help us in identifying cases where LVI
invariants are violated, or transforms that leave LVI in an incorrect state.
Right now, I have added two test cases to show that the printer pass is working.
I will be adding more test cases in a later change, once this change is
checked in upstream.
Reviewers: reames, dberlin, sanjoy, apilipenko
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30790
llvm-svn: 298542
This patch allows SCEV predicate analysis to prove implication of some expression predicates
from context predicates related to arguments of those expressions.
It introduces three new rules:
For addition:
(A >X && B >= 0) || (B >= 0 && A > X) ===> (A + B) > X.
For division:
(A > X) && (0 < B <= X + 1) ===> (A / B > 0).
(A > X) && (-B <= X < 0) ===> (A / B >= 0).
Using these rules, SCEV is able to prove facts like "if X > 1 then X / 2 > 0".
They can also be combined with the same context, to prove more complex expressions like
"if X > 1 then X/2 + 1 > 1".
Diffirential Revision: https://reviews.llvm.org/D30887
Reviewed by: sanjoy
llvm-svn: 298481
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
After the loop unroll threshold was increased in r295538, very
large constant expressions can be created. This prevents them
from having to be recursively scanned, leading to a compile
time blow-up.
Differential Revision: https://reviews.llvm.org/D30689
llvm-svn: 298356
If loop bound containing calculations like min(a,b), the Scalar
Evolution API getSmallConstantTripMultiple returns 4294967295 "-1"
as the trip multiple. The problem is that, SCEV use -1 * umax to
represent umin. The multiple constant -1 was returned, and the logic
of guarding against huge trip counts was skipped. Because -1 has 32
active bits.
The fix attempt to factor more general cases. First try to get the
greatest power of two divisor of trip count expression. In case
overflow happens, the trip count expression is still divisible by the
greatest power of two divisor returned. Returns 1 if not divisible by 2.
Patch by Huihui Zhang <huihuiz@codeaurora.org>
Differential Revision: https://reviews.llvm.org/D30840
llvm-svn: 298301
Summary:
This approach has two major advantages over the existing one:
1. We don't need to extend bitwidth in our computations. Extending
bitwidth is a big issue for compile time as we often end up working with
APInts wider than 64bit, which is a slow case for APInt.
2. When we zero extend a wrapped range, we lose some information (we
replace the range with [0, 1 << src bit width)). Thus, avoiding such
extensions better preserves information.
Correctness testing:
I ran 'ninja check' with assertions that the new implementation of
getRangeForAffineAR gives the same results as the old one (this
functionality is not present in this patch). There were several failures
- I inspected them manually and found out that they all are caused by
the fact that we're returning more accurate results now (see bullet (2)
above).
Without such assertions 'ninja check' works just fine, as well as
SPEC2006.
Compile time testing:
CTMark/Os:
- mafft/pairlocalalign -16.98%
- tramp3d-v4/tramp3d-v4 -12.72%
- lencod/lencod -11.51%
- Bullet/bullet -4.36%
- ClamAV/clamscan -3.66%
- 7zip/7zip-benchmark -3.19%
- sqlite3/sqlite3 -2.95%
- SPASS/SPASS -2.74%
- Average -5.81%
Performance testing:
The changes are expected to be neutral for runtime performance.
Reviewers: sanjoy, atrick, pete
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30477
llvm-svn: 297992
getIntrinsicInstrCost() used to only compute scalarization cost based on types.
This patch improves this so that the actual arguments are checked when they are
available, in order to handle only unique non-constant operands.
Tests updates:
Analysis/CostModel/X86/arith-fp.ll
Transforms/LoopVectorize/AArch64/interleaved_cost.ll
Transforms/LoopVectorize/ARM/interleaved_cost.ll
The improvement in getOperandsScalarizationOverhead() to differentiate on
constants made it necessary to update the interleaved_cost.ll tests even
though they do not relate to intrinsics.
Review: Hal Finkel
https://reviews.llvm.org/D29540
llvm-svn: 297705
When the array indexes are all determined by GVN to be constants,
a call is made to constant-folding to optimize/simplify the address
computation.
The constant-folding, however, makes a mistake in that it sometimes reads
back stale Idxs instead of NewIdxs, that it re-computed in previous iteration.
This leads to incorrect addresses coming out of constant-folding to GEP.
A test case is included. The error is only triggered when indexes have particular
patterns that the stale/new index updates interplay matters.
Reviewers: Daniel Berlin
Differential Revision: https://reviews.llvm.org/D30642
llvm-svn: 297317
While working on improvements to region info analysis, this test case caused an
incorrect region bb2 => bb3 to be detected.
Reviewers: grosser
Contributed-by: Nandini Singhal <cs15mtech01004@iith.ac.in>
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D30652
llvm-svn: 297014
While working on improvements to the region info analysis, this test case caused
an incorrect region 1 => 2 to be detected. It is incorrect because entry has an
outgoing edge to 3. This is interesting because 1 dom 2 and 2 pdom 1, which
should have been enough to prevent incoming forward edges into the region and
outgoing forward edges from the region.
Reviewers: grosser
Subscribers: llvm-commits
Contributed-by: Nandini Singhal <cs15mtech01004@iith.ac.in>
Differential Revision: https://reviews.llvm.org/D30603
llvm-svn: 296988
and also "clang-format GenericDomTreeConstruction.h, since the current
formatting makes it look like their is a bug in the loop indentation, and there
is not"
This reverts commit r296535.
There are still some open design questions which I would like to discuss. I
revert this for Daniel (who gave the OK), as he is on vacation.
llvm-svn: 296812