Introduce a new RISCVExpandPseudoInsts pass to expand atomic
pseudo-instructions after register allocation. This is necessary in order to
ensure that register spills aren't introduced between LL and SC, thus breaking
the forward progress guarantee for the operation. AArch64 does something
similar for CmpXchg (though only at O0), and Mips is moving towards this
approach (see D31287). See also [this mailing list
post](http://lists.llvm.org/pipermail/llvm-dev/2016-May/099490.html) from
James Knight, which summarises the issues with lowering to ll/sc in IR or
pre-RA.
See the [accompanying RFC
thread](http://lists.llvm.org/pipermail/llvm-dev/2018-June/123993.html) for an
overview of the lowering strategy.
Differential Revision: https://reviews.llvm.org/D47882
llvm-svn: 342534
The 0x800 bit in @feat.00 needs to be set in order to make LLD pick up
the .gfid$y table. I believe this is fine to set even if we don't emit
the instrumentation.
We haven't emitted @feat.00 on 64-bit before. I see that MSVC does emit
it, but I'm not entirely sure what the default value should be. I went
with zero since that seems as safe as not emitting the symbol in the
first place.
Differential Revision: https://reviews.llvm.org/D52235
llvm-svn: 342532
- Instead of having both `SUnit::dump(ScheduleDAG*)` and
`ScheduleDAG::dumpNode(ScheduleDAG*)`, just keep the latter around.
- Add `ScheduleDAG::dump()` and avoid code duplication in several
places. Implement it for different ScheduleDAG variants.
- Add `ScheduleDAG::dumpNodeName()` in favor of the `SUnit::print()`
functions. They were only ever used for debug dumping and putting the
function into ScheduleDAG is consistent with the `dumpNode()` change.
llvm-svn: 342520
This allows the hard-coded shouldForceImmediate logic to be removed because
the generated MatchOperandParserImpl makes use of the current context (i.e.
the current mnemonic) to determine parsing behaviour, and so won't first try
to parse a register before parsing a symbol name.
No functional change is intended. gas accepts immediate arguments for call,
tail and lla. This patch doesn't address this discrepancy.
Differential Revision: https://reviews.llvm.org/D51733
llvm-svn: 342488
addi a0, a0, foo and lw a0, foo(a0) and similar are now rejected. An explicit
%lo and %pcrel_lo modifier is required. This matches gas behaviour.
llvm-svn: 342487
Reject bare symbols and accept only %pcrel_hi(sym) for auipc and %hi(sym) for
lui. Also test valid operand modifiers in rv32i-valid.s.
Note this is slightly stricter than gas, which will accept either %pcrel_hi or
%hi for both lui and auipc.
Differential Revision: https://reviews.llvm.org/D51731
llvm-svn: 342486
This is a follow-up to the previous patch that eliminated some of the rotates.
With this addition, we will also emit the record-form andis.
This patch increases the number of record-form rotates we eliminate by
more than 70%.
Differential revision: https://reviews.llvm.org/D44897
llvm-svn: 342478
Both ANDIo and ANDISo (and the 64-bit versions) are record-form instructions.
When optimizing compares, we handle the former in order to eliminate the compare
instruction but not the latter. This patch just adds the latter to the set of
instructions we optimize.
The reason these instructions need to be handled separately is that they are not
part of the RecFormRel map (since they don't have a non-record-form). The
missing "and-immediate-shifted" is just an oversight in the initial
implementation.
Differential revision: https://reviews.llvm.org/D51353
llvm-svn: 342472
This tries to make use of evaluateAsRelocatable in AArch64AsmParser::classifySymbolRef
to parse more complex expressions as relocatable operands. It is hopefully better than
the existing code which only handles Symbol +- Constant.
This allows us to parse more complex adr/adrp, mov, ldr/str and add operands. It also
loosens the requirements on parsing addends in ld/st and mov's and adds a number of
tests.
Differential Revision: https://reviews.llvm.org/D51792
llvm-svn: 342455
When doing some instruction scheduling work, we noticed some missing itineraries.
Before we switch to machine scheduler, those missing itineraries might not have impact to actually scheduling,
because we can still get same latency due to default values.
With machine scheduler, however, itineraries will have impact to scheduling.
eg: NumMicroOps will default to be 0 if there is NO itineraries for specific instruction class.
And most of the instruction class with itineraries will have NumMicroOps default to 1.
This will has impact on the count of RetiredMOps, affects the Pending/Available Queue,
then causing different scheduling or suboptimal scheduling further.
Patch By: jsji (Jinsong Ji)
Differential Revision: https://reviews.llvm.org/D52040
llvm-svn: 342441
This reverts r342395 as it caused error
> Argument value type does not match pointer operand type!
> %0 = atomicrmw volatile xchg i8* %_Value1, i32 1 monotonic, !dbg !25
> i8in function atomic_flag_test_and_set
> fatal error: error in backend: Broken function found, compilation aborted!
on bot http://green.lab.llvm.org/green/job/clang-stage1-configure-RA/
More details are available at https://reviews.llvm.org/D52080
llvm-svn: 342431
Add support mips64(el)-linux-gnuabin32 triples, and set them to N32.
Debian architecture name mipsn32/mipsn32el are also added. Set
UseIntegratedAssembler for N32 if we can detect it.
Patch by YunQiang Su.
Differential revision: https://reviews.llvm.org/D51408
llvm-svn: 342416
Summary:
The IR reference for the `byval` attribute states:
```
This indicates that the pointer parameter should really be passed by value
to the function. The attribute implies that a hidden copy of the pointee is
made between the caller and the callee, so the callee is unable to modify
the value in the caller. This attribute is only valid on LLVM pointer arguments.
```
However, on Win64, this attribute is unimplemented and the raw pointer is
passed to the callee instead. This is problematic, because frontend authors
relying on the implicit hidden copy (as happens for every other calling
convention) will see the passed value silently (if mutable memory) or
loudly (by means of a crash) modified because the callee treats the
location as scratch memory space it is allowed to mutate.
At this point, it's worth taking a step back to understand the context.
In most calling conventions, aggregates that are too large to be passed
in registers, instead get *copied* to the stack at a fixed (computable
from the signature) offset of the stack pointer. At the LLVM, we hide
this hidden copy behind the byval attribute. The caller passes a pointer
to the desired data and the callee receives a pointer, but these pointers
are not the same. In particular, the pointer that the callee receives
points to temporary stack memory allocated as part of the call lowering.
In most calling conventions, this pointer is never realized in registers
or memory. The temporary memory is simply defined by an implicit
offset from the stack pointer at function entry.
Win64, uniquely, works differently. The structure is still passed in
memory, but instead of being stored at an implicit memory offset, the
caller computes a pointer to the temporary memory and passes it to
the callee as a regular pointer (taking up a register, or if all
registers are taken up, an additional stack slot). Presumably, this
was done to allow eliding the copy when passing aggregates through
several functions on the stack.
This explains why ignoring the `byval` attribute mostly works on Win64.
The argument simply gets passed as a pointer and as long as we're ok
with the callee trampling all over that memory, there are no ill effects.
However, it does contradict the documentation of the `byval` attribute
which specifies that there is to be an implicit copy.
Frontends can of course work around this by never emitting the `byval`
attribute for Win64 and creating `alloca`s for the requisite temporary
stack slots (and that does appear to be what frontends are doing).
However, the presence of the `byval` attribute is not a trap for
frontend authors, since it seems to work, but silently modifies the
passed memory contrary to documentation.
I see two solutions:
- Disallow the `byval` attribute in the verifier if using the Win64
calling convention.
- Make it work by simply emitting a temporary stack copy as we would
with any other calling convention (frontends can of course always
not use the attribute if they want to elide the copy).
This patch implements the second option (make it work), though I would
be fine with the first also.
Ref: https://github.com/JuliaLang/julia/issues/28338
Reviewers: rnk
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D51842
llvm-svn: 342402
isSupportedValue explicitly checked and accepted many types of value,
primarily for debugging reasons. Remove most of these checks and do a
bit of refactoring now that the pass is more stable. This also enables
ZExts to be sources, but this has very little practical benefit at the
moment extend instructions will still be introduced.
Differential Revision: https://reviews.llvm.org/D52080
llvm-svn: 342395
We allow overflowing instructions if they're decreasing and only used
by an unsigned compare. Add the extra condition that the icmp cannot
be using a negative immediate.
Differential Revision: https://reviews.llvm.org/D52102
llvm-svn: 342392
For constant non-uniform cases we'll never introduce more and/andn/or selects than already occur in generic pre-SSE41 ISD::SRL lowering.
llvm-svn: 342352
https://bugs.llvm.org/show_bug.cgi?id=38949
It's not clear to me that we even need a one-use check in this fold.
Ie, 2 independent loads might be better than a load+dependent shuffle.
Note that the existing re-use tests are not affected. We actually do form a
broadcast node in those tests now because there's no extra use of the
insert_subvector node in those cases. But something later in isel pattern
matching decides that it is not worth using a broadcast for the full load in
those tests:
Legalized selection DAG: %bb.0 'test_broadcast_2f64_4f64_reuse:'
t7: v2f64,ch = load<(load 16 from %ir.p0)> t0, t2, undef:i64
t4: i64,ch = CopyFromReg t0, Register:i64 %1
t10: ch = store<(store 16 into %ir.p1)> t7:1, t7, t4, undef:i64
t18: v4f64 = insert_subvector undef:v4f64, t7, Constant:i64<0>
t20: v4f64 = insert_subvector t18, t7, Constant:i64<2>
Becomes:
t7: v2f64,ch = load<(load 16 from %ir.p0)> t0, t2, undef:i64
t4: i64,ch = CopyFromReg t0, Register:i64 %1
t10: ch = store<(store 16 into %ir.p1)> t7:1, t7, t4, undef:i64
t21: v4f64 = X86ISD::SUBV_BROADCAST t7
ISEL: Starting selection on root node: t21: v4f64 = X86ISD::SUBV_BROADCAST t7
...
Created node: t27: v4f64 = INSERT_SUBREG IMPLICIT_DEF:v4f64, t7, TargetConstant:i32<7>
Morphed node: t21: v4f64 = VINSERTF128rr t27, t7, TargetConstant:i8<1>
llvm-svn: 342347
Summary: This unfortunately adds a move, but isn't that better than going to the int domain and back?
Reviewers: RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D52134
llvm-svn: 342327
Summary:
MOVMSK only care about the sign bit so we don't need the setcc to fill the whole element with 0s/1s. We can just shift the bit we're looking for into the sign bit. This saves a constant pool load.
Inspired by PR38840.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: lebedev.ri, llvm-commits
Differential Revision: https://reviews.llvm.org/D52121
llvm-svn: 342326
Summary:
Implement shifts of vectors by i32. Since LLVM defines shifts as
binary operations between two vectors, this involves pattern matching
on splatted shift operands. For v2i64 shifts any i32 shift operands
have to be zero extended in the input and any i64 shift operands have
to be wrapped in the output. Depends on D52007.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D51906
llvm-svn: 342302
Summary:
Integer types smaller than i32 must be extended to i32 by default.
The feature "crbits" introduced at r202451 handles i1 as a special case,
but it did not extend properly.
The caller was, therefore, passing i1 stack arguments by writing 0/1 to
the first byte of the 4-byte stack object and callee was
reading the first byte for the value.
"crbits" is enabled if the optimization level is greater than 1,
which is very common in "release builds".
Such discrepancies with ABI specification also introduces
potential incompatibility with programs or libraries
built with other compilers e.g. GCC.
Fixes PR38661
Reviewers: hfinkel, cuviper
Subscribers: sylvestre.ledru, glaubitz, nagisa, nemanjai, kbarton, llvm-commits
Differential Revision: https://reviews.llvm.org/D51108
llvm-svn: 342288
Attempt to lower a shuffle as an unpack of elements from two inputs followed by a single-input (wider) permutation.
As long as the permutation is wider this is a win - there may be some circumstances where same size permutations would also be useful but I've left that for future work.
Differential Revision: https://reviews.llvm.org/D52043
llvm-svn: 342257
Summary:
GFX9 and above support sin/cos instructions with a greater range and thus don't
require a fract instruction prior to invocation.
Added a subtarget feature to reflect this and added code to take advantage of
expanded range on GFX9+
Also updated the tests to check correct behaviour
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D51933
Change-Id: I1c1f1d3726a5ae32116646ca5cfa1ab4ef69e5b0
llvm-svn: 342222
On failing to find sequences that can be converted into dual macs,
try to find sequential 16-bit loads that are used by muls which we
can then use smultb, smulbt, smultt with a wide load.
Differential Revision: https://reviews.llvm.org/D51983
llvm-svn: 342210
After recent improvements which makes better use of LOC instead of IPM, the
TTI cost functions also needs to be updated to reflect this.
This involves sext, zext and xor of i1.
The tests were updated so that for z13 the new costs are expected, while the
old costs are still checked for on zEC12.
Review: Ulrich Weigand
https://reviews.llvm.org/D51339
llvm-svn: 342207
Summary:
I accidentally left this behind in D50306, and it causes a build warning
when I build with gcc7.
Subscribers: arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D52022
Change-Id: I30f7a47047e9d9d841f652da66d2fea19e74842c
llvm-svn: 342189
When replacing a named register input to the appropriately sized
sub/super-register. In the case of a 64-bit value being assigned to a
register in 32-bit mode, match GCC's assignment.
Reviewers: eli.friedman, craig.topper
Subscribers: nickdesaulniers, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D51502
llvm-svn: 342175
Summary:
Fixed assertions due to invalid fixup when encoding compressed instructions
(c.addi, c.addiw, c.li, c.andi) with bare symbols with/without modifiers.
This matches GAS behavior as well.
This bug was uncovered by a LLVM MC Disassembler Protocol Buffer Fuzzer
for the RISC-V assembly language.
Reviewers: asb
Reviewed By: asb
Subscribers: rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, asb
Differential Revision: https://reviews.llvm.org/D52005
llvm-svn: 342160
Summary:
The illegal instruction 0x00 0x00 is being wrongly decoded as
c.addi4spn with 0 immediate.
The invalid instruction 0x01 0x61 is being wrongly decoded as
c.addi16sp with 0 immediate.
This bug was uncovered by a LLVM MC Disassembler Protocol Buffer Fuzzer
for the RISC-V assembly language.
Reviewers: asb
Reviewed By: asb
Subscribers: rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, asb
Differential Revision: https://reviews.llvm.org/D51815
llvm-svn: 342159
Also, add a check to ensure that when main has the expected signature
we do not create a wrapper.
Differential Revision: https://reviews.llvm.org/D51562
llvm-svn: 342157
We previously only allowed truncs as sinks, but now allow them as
sources too. We do this by checking that the result type is the
narrow type that we're trying to optimise for.
Differential Revision: https://reviews.llvm.org/D51978
llvm-svn: 342141
Part of FixConsts wrongly assumes either a 8- or 16-bit constant
which can result in the wrong constants being generated during
promotion.
Differential Revision: https://reviews.llvm.org/D52032
llvm-svn: 342140
If an argument was passed on the stack, this
was using the default alignment.
I'm not sure there's an observable change from this. This
was observable due to bugs in expansion of unaligned
loads and stores, but since that is fixed I don't think
this matters much.
llvm-svn: 342133