If MCContext has an error, MCAssembler::layout may stop early
and some MCFragment's may not finalize.
In the Linux kernel, arch/x86/lib/memcpy_64.S could trigger the assert before
"x86_64: Change .weak to SYM_FUNC_START_WEAK for arch/x86/lib/mem*_64.S"
Replace mutiple `if else` clauses with a `switch` clause and remove redundant checks. Before this patch, we need to add a statement like `if(!isa<MCxxxFragment>(Frag)) ` here each time we add a new kind of `MCEncodedFragment` even if it has no fixups. After this patch, we don't need to do that.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D83366
Give up folding an expression if the fragment of one of the operands
would require laying out a fragment already being laid out. This
prevents hitting an infinite recursion when a fill size expression
refers to a later fragment since computing the offset of that fragment
would require laying out the fill fragment and thus computing its size
expression.
Reviewed By: echristo
Differential Revision: https://reviews.llvm.org/D79570
Summary:
Before this patch, `relaxInstruction` takes three arguments, the first
argument refers to the instruction before relaxation and the third
argument is the output instruction after relaxation. There are two quite
strange things:
1) The first argument's type is `const MCInst &`, the third
argument's type is `MCInst &`, but they may be aliased to the same
variable
2) The backends of ARM, AMDGPU, RISC-V, Hexagon assume that the third
argument is a fresh uninitialized `MCInst` even if `relaxInstruction`
may be called like `relaxInstruction(Relaxed, STI, Relaxed)` in a
loop.
In this patch, we drop the thrid argument, and let `relaxInstruction`
directly modify the given instruction. Also, this patch fixes the bug https://bugs.llvm.org/show_bug.cgi?id=45580, which is introduced by D77851, and
breaks the assumption of ARM, AMDGPU, RISC-V, Hexagon.
Reviewers: Razer6, MaskRay, jyknight, asb, luismarques, enderby, rtaylor, colinl, bcain
Reviewed By: Razer6, MaskRay, bcain
Subscribers: bcain, nickdesaulniers, nathanchance, wuzish, annita.zhang, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, tpr, sbc100, jgravelle-google, kristof.beyls, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78364
For `.bss; nop`, MC inappropriately calls abort() (via report_fatal_error()) with a message
`cannot have fixups in virtual section!`
It is a bug to crash for invalid user input. Fix it by erroring out early in EmitInstToData().
Similarly, emitIntValue() in a virtual section (SHT_NOBITS in ELF) can crash with the mssage
`non-zero initializer found in section '.bss'` (see D4199)
It'd be nice to report the location but so many directives can call emitIntValue()
and it is difficult to track every location.
Note, COFF does not crash because MCAssembler::writeSectionData() is not
called for an IMAGE_SCN_CNT_UNINITIALIZED_DATA section.
Note, GNU as' arm64 backend reports ``Error: attempt to store non-zero value in section `.bss'``
for a non-zero .inst but fails to do so for other instructions.
We simply reject all instructions, even if the encoding is all zeros.
The Mach-O counterpart is D48517 (see `test/MC/MachO/zerofill-text.s`)
Reviewed By: rnk, skan
Differential Revision: https://reviews.llvm.org/D78138
I plan to use MCSection::getName() in D78138. Having the function in the base class is also convenient for debugging.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D78251
Summary:
The current relaxation implementation is not correctly adjusting the
size and offsets of fragements in one section based on changes in size
of another if the layout order of the two happened to be such that the
former was visited before the later. Therefore, we need to invalidate
the fragments in all sections after each iteration of relaxation, and
possibly further relax some of them in the next ieration. This fixes
PR#45190.
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D76114
Summary:
Currently, a BoundaryAlign fragment may be inserted after the branch
that needs to be aligned to truncate the current fragment, this fragment is
unused at most of time. To avoid that, we can insert a new empty Data
fragment instead. Non-relaxable instruction is usually emitted into Data
fragment, so the inserted empty Data fragment will be reused at a high
possibility.
Reviewers: annita.zhang, reames, MaskRay, craig.topper, LuoYuanke, jyknight
Reviewed By: reames, LuoYuanke
Subscribers: llvm-commits, dexonsmith, hiraditya
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75438
Summary:
Currently the boundaryalign fragment caches its size during the process
of layout and then it is relaxed and update the size in each iteration. This
behaviour is unnecessary and ugly.
Reviewers: annita.zhang, reames, MaskRay, craig.topper, LuoYuanke, jyknight
Reviewed By: MaskRay
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D75404
MC currently does not emit these relocation types, and lld does not
handle them. Add FKF_Constant as a work-around of some ARM code after
D72197. Eventually we probably should implement these relocation types.
By Fangrui Song!
Differential revision: https://reviews.llvm.org/D72892
Having this as it's own function helps to reduce indentation and allows use of return instead of wiring a value over the switch. A lambda would have also worked, but with slightly deeper nesting.
Summary:
Previously, we would erroneously turn %pcrel_lo(label), where label has
a %pcrel_hi against a weak symbol, into %pcrel_lo(label + offset), as
evaluatePCRelLo would believe the target independent logic was going to
fold it. Moreover, even if that were fixed, shouldForceRelocation lacks
an MCAsmLayout and thus cannot evaluate the %pcrel_hi fixup to a value
and check the symbol, so we would then erroneously constant-fold the
%pcrel_lo whilst leaving the %pcrel_hi intact. After D72197, this same
sequence also occurs for symbols with global binding, which is triggered
in real-world code.
Instead, as discussed in D71978, we introduce a new FKF_IsTarget flag to
avoid these kinds of issues. All the resolution logic happens in one
place, with no coordination required between RISCAsmBackend and
RISCVMCExpr to ensure they implement the same logic twice. Although the
implementation of %pcrel_hi can be left as target independent, we make
it target dependent to ensure that they are handled identically to
%pcrel_lo, otherwise we risk one of them being constant folded but the
other being preserved. This also allows us to properly support fixup
pairs where the instructions are in different fragments.
Reviewers: asb, lenary, efriedma
Reviewed By: efriedma
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73211
Silence (clang/MSVC) static analyzer warnings that the fragment data may either write out of bounds of the local array or reference uninitialized data.
WARNING: If you're looking at this patch because you're looking for a full
performace mitigation of the Intel JCC Erratum, this is not it!
This is a preliminary patch on the patch towards mitigating the performance
regressions caused by Intel's microcode update for Jump Conditional Code
Erratum. For context, see:
https://www.intel.com/content/www/us/en/support/articles/000055650.html
The patch adds the required assembler infrastructure and command line options
needed to exercise the logic for INTERNAL TESTING. These are NOT public flags,
and should not be used for anything other than LLVM's own testing/debugging
purposes. They are likely to change both in spelling and meaning.
WARNING: This patch is knowingly incorrect in some cornercases. We need, and
do not yet provide, a mechanism to selective enable/disable the padding.
Conversation on this will continue in parellel with work on extending this
infrastructure to support prefix padding.
The goal here is to have the assembler align specific instructions such that
they neither cross or end at a 32 byte boundary. The impacted instructions are:
a. Conditional jump.
b. Fused conditional jump.
c. Unconditional jump.
d. Indirect jump.
e. Ret.
f. Call.
The new options for llvm-mc are:
-x86-align-branch-boundary=NUM aligns branches within NUM byte boundary.
-x86-align-branch=TYPE[+TYPE...] specifies types of branches to align.
A new MCFragment type, MCBoundaryAlignFragment, is added, which may emit
NOP to align the fused/unfused branch.
alignBranchesBegin inserts MCBoundaryAlignFragment before instructions,
alignBranchesEnd marks the end of the branch to be aligned,
relaxBoundaryAlign grows or shrinks sizes of NOP to align the target branch.
Nop padding is disabled when the instruction may be rewritten by the linker,
such as TLS Call.
Process Note: I am landing a patch by skan as it has been LGTMed, and
continuing to iterate on the review is simply slowing us down at this point.
We can and will continue to iterate in tree.
Patch By: skan
Differential Revision: https://reviews.llvm.org/D70157
D34393 added MCCodePadder as an infrastructure for padding code with
NOP instructions. It lacked tests and was not being worked on since
then.
Intel has now worked on an assembler patch to mitigate performance loss
after applying microcode update for the Jump Conditional Code Erratum.
https://www.intel.com/content/www/us/en/support/articles/000055650/processors.html
This new patch shares similarity with MCCodePadder, but has a concrete
use case in mind and is being actively developed. The infrastructure it
introduces can potentially be used for general performance improvement
via alignment. Delete the unused MCCodePadder so that people can develop
the new feature from a clean state.
Reviewed By: jyknight, skan
Differential Revision: https://reviews.llvm.org/D71106
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, JDevlieghere, alexshap, rupprecht, jhenderson
Subscribers: sdardis, nemanjai, hiraditya, kbarton, jakehehrlich, jrtc27, MaskRay, atanasyan, jsji, seiya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D67499
llvm-svn: 371742
It is necessary to generate fixups in .debug_frame or .eh_frame as
relaxation is enabled due to the address delta may be changed after
relaxation.
There is an opcode with 6-bits data in debug frame encoding. So, we
also need 6-bits fixup types.
Differential Revision: https://reviews.llvm.org/D58335
llvm-svn: 366524
It is necessary to generate fixups in .debug_frame or .eh_frame as
relaxation is enabled due to the address delta may be changed after
relaxation.
There is an opcode with 6-bits data in debug frame encoding. So, we
also need 6-bits fixup types.
Differential Revision: https://reviews.llvm.org/D58335
llvm-svn: 366442
Linker relaxation may change code size. We need to fix up the alignment
of alignment directive in text section by inserting Nops and R_RISCV_ALIGN
relocation type. So then linker could satisfy the alignment by removing Nops.
To do this:
1. Add shouldInsertExtraNopBytesForCodeAlign target hook to calculate
the Nops we need to insert.
2. Add shouldInsertFixupForCodeAlign target hook to insert
R_RISCV_ALIGN fixup type.
Differential Revision: https://reviews.llvm.org/D47755
llvm-svn: 352616
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
build version load commands in the object file
This commit introduces a new metadata node called "SDK Version". It will be set
by the frontend to mark the platform SDK (macOS/iOS/etc) version which was used
during that particular compilation.
This node is used when machine code is emitted, by either saving the SDK version
into the appropriate macho load command (version min/build version), or by
emitting the assembly for these load commands with the SDK version specified as
well.
The assembly for both load commands is extended by allowing it to contain the
sdk_version X, Y [, Z] trailing directive to represent the SDK version
respectively.
rdar://45774000
Differential Revision: https://reviews.llvm.org/D55612
llvm-svn: 349119
It is necessary to generate fixups in .debug_line as relaxation is
enabled due to the address delta may be changed after relaxation.
DWARF will record the mappings of lines and addresses in
.debug_line section. It will encode the information using special
opcodes, standard opcodes and extended opcodes in Line Number
Program. I use DW_LNS_fixed_advance_pc to encode fixed length
address delta and DW_LNE_set_address to encode absolute address
to make it possible to generate fixups in .debug_line section.
Differential Revision: https://reviews.llvm.org/D46850
llvm-svn: 338477
Instruction bundling is only supported on descendants of the
MCEncodedFragment type. By moving the bundling functionality and
MCSubtargetInfo to this class it makes it easier to set and extract the
MCSubtargetInfo when it is necessary.
This is a refactoring change that will make it easier to pass the
MCSubtargetInfo through to writeNops when nop padding is required.
Differential Revision: https://reviews.llvm.org/D45959
llvm-svn: 334814
On targets like Arm some relaxations may only be performed when certain
architectural features are available. As functions can be compiled with
differing levels of architectural support we must make a judgement on
whether we can relax based on the MCSubtargetInfo for the function. This
change passes through the MCSubtargetInfo for the function to
fixupNeedsRelaxation so that the decision on whether to relax can be made
per function. In this patch, only the ARM backend makes use of this
information. We must also pass the MCSubtargetInfo to applyFixup because
some fixups skip error checking on the assumption that relaxation has
occurred, to prevent code-generation errors applyFixup must see the same
MCSubtargetInfo as fixupNeedsRelaxation.
Differential Revision: https://reviews.llvm.org/D44928
llvm-svn: 334078
For RISC-V it is desirable to have relaxation happen in the linker once
addresses are known, and as such the size between two instructions/byte
sequences in a section could change.
For most assembler expressions, this is fine, as the absolute address results
in the expression being converted to a fixup, and finally relocations.
However, for expressions such as .quad .L2-.L1, the assembler folds this down
to a constant once fragments are laid out, under the assumption that the
difference can no longer change, although in the case of linker relaxation the
differences can change at link time, so the constant is incorrect. One place
where this commonly appears is in debug information, where the size of a
function expression is in a form similar to the above.
This patch extends the assembler to allow an AsmBackend to declare that it
does not want the assembler to fold down this expression, and instead generate
a pair of relocations that allow the linker to carry out the calculation. In
this case, the expression is not folded, but when it comes to emitting a
fixup, the generic FK_Data_* fixups are converted into a pair, one for the
addition half, one for the subtraction, and this is passed to the relocation
generating methods as usual. I have named these FK_Data_Add_* and
FK_Data_Sub_* to indicate which half these are for.
For RISC-V, which supports this via e.g. the R_RISCV_ADD64, R_RISCV_SUB64 pair
of relocations, these are also set to always emit relocations relative to
local symbols rather than section offsets. This is to deal with the fact that
if relocations were calculated on e.g. .text+8 and .text+4, the result 12
would be stored rather than 4 as both addends are added in the linker.
Differential Revision: https://reviews.llvm.org/D45181
Patch by Simon Cook.
llvm-svn: 333079
Also clean up a couple of hacks where we were writing the section
contents to another stream by setting the object writer's stream,
writing and setting it back.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47038
llvm-svn: 332858
To make this work I needed to add an endianness field to MCAsmBackend
so that writeNopData() implementations know which endianness to use.
Part of PR37466.
Differential Revision: https://reviews.llvm.org/D47035
llvm-svn: 332857
Avoid requirement that number of values must be known at assembler
time.
Fixes PR33586.
Reviewers: rnk, peter.smith, echristo, jyknight
Subscribers: hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D46703
llvm-svn: 332741
For RISCV branch instructions, we need to preserve relocation types when linker
relaxation enabled, so then linker could modify offset when the branch offsets
changed.
We preserve relocation types by define shouldForceRelocation.
IsResolved return by evaluateFixup will always false when shouldForceRelocation
return true. It will make RISCV MC Branch Relaxation always relax 16-bit
branches to 32-bit form, even if the symbol actually could be resolved.
To avoid 16-bit branches always relax to 32-bit form when linker relaxation
enabled, we add a new parameter WasForced to indicate that the symbol actually
couldn't be resolved and not forced by shouldForceRelocation return true.
RISCVAsmBackend::fixupNeedsRelaxationAdvanced could relax branches with
unresolved symbols by (!IsResolved && !WasForced).
RISCV MC Branch Relaxation is needed because RISCV could perform 32-bit
to 16-bit transformation in MC layer.
Differential Revision: https://reviews.llvm.org/D46350
llvm-svn: 332696
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46290
llvm-svn: 331272
Fix the infinite loop reported in PR35809. It can occur with GCC-style
EH table assembly, where the compiler relies on the assembler to
calculate the offsets in the EH table.
Also see https://sourceware.org/bugzilla/show_bug.cgi?id=4029 for the
equivalent issue in the GNU assembler.
Patch by Ryan Prichard!
llvm-svn: 323934