Commit Graph

53 Commits

Author SHA1 Message Date
Zola Bridges dfabffb195 [x86][lvi][seses] Use SESES at O0 for LVI mitigation
Use SESES as the fallback at O0 where the optimized LVI pass isn't desired due
to its effect on build times at O0.

I updated the LVI tests since this changes the code gen for the tests touched in the parent revision.

This is a follow up to the comments I made here: https://reviews.llvm.org/D80964

Hopefully we can continue the discussion here.

Also updated SESES to handle LFENCE instructions properly instead of adding
redundant LFENCEs. In particular, 1) no longer add LFENCE if the current
instruction being processed is an LFENCE and 2) no longer add LFENCE if the
instruction right before the instruction being processed is an LFENCE

Reviewed By: sconstab

Differential Revision: https://reviews.llvm.org/D82037
2020-07-07 11:05:09 -07:00
Craig Topper 93264a2e4f [X86] Enable the EVEX->VEX compression pass at -O0.
A lot of what EVEX->VEX does is equivalent to what the
prioritization in the assembly parser does. When an AVX mnemonic
is used without any EVEX features or XMM16-31, the parser will
pick the VEX encoding.

Since codegen doesn't go through the parser, we should also
use VEX instructions when we can so that the code coming out of
integrated assembler matches what you'd get from outputing an
assembly listing and parsing it.

The pass early outs if AVX isn't enabled and uses TSFlags to
check for EVEX instructions before doing the more costly table
lookups. Hopefully that's enough to keep this from impacting
-O0 compile times.
2020-06-13 12:29:04 -07:00
Scott Constable 7e06cf0011 [X86] Add an Unoptimized Load Value Injection (LVI) Load Hardening Pass
@nikic raised an issue on D75936 that the added complexity to the O0 pipeline was causing noticeable slowdowns for `-O0` builds. This patch addresses the issue by adding a pass with equal security properties, but without any optimizations (and more importantly, without the need for expensive analysis dependencies).

Reviewers: nikic, craig.topper, mattdr

Reviewed By: craig.topper, mattdr

Differential Revision: https://reviews.llvm.org/D80964
2020-06-10 15:31:47 -07:00
Nikita Popov e0e5c64460 [SDAG] Don't require LazyBlockFrequencyInfo at optnone
While LazyBlockFrequencyInfo itself is lazy, the dominator tree
and loop info analyses it requires are not. Drop the dependency
on this pass in SelectionDAGIsel at O0.
This makes for a ~0.6% O0 compile-time improvement.

Differential Revision: https://reviews.llvm.org/D80387
2020-05-28 18:48:33 +02:00
Nikita Popov 2833c46f75 [DwarfEHPrepare] Don't prune unreachable resumes at optnone
Disable pruning of unreachable resumes in the DwarfEHPrepare pass
at optnone. While I expect the pruning itself to be essentially free,
this does require a dominator tree calculation, that is not used for
anything else. Saving this DT construction makes for a 0.4% O0
compile-time improvement.

Differential Revision: https://reviews.llvm.org/D80400
2020-05-23 20:58:01 +02:00
Nikita Popov 0c6bba71e3 [TargetPassConfig] Don't add alias analysis at optnone
When performing codegen at optnone, don't add alias analysis to
the pipeline. We don't need it, but it causes an unnecessary
dominator tree calculation.

I've also moved the module verifier call to the top so that a bunch
of disabled-at-optnone passes group more nicely.

Differential Revision: https://reviews.llvm.org/D80378
2020-05-23 10:35:03 +02:00
Scott Constable e97a3e5d9d [X86] Add a Pass that builds a Condensed CFG for Load Value Injection (LVI) Gadgets
Adds a new data structure, ImmutableGraph, and uses RDF to find LVI gadgets and add them to a MachineGadgetGraph.

More specifically, a new X86 machine pass finds Load Value Injection (LVI) gadgets consisting of a load from memory (i.e., SOURCE), and any operation that may transmit the value loaded from memory over a covert channel, or use the value loaded from memory to determine a branch/call target (i.e., SINK).

Also adds a new target feature to X86: +lvi-load-hardening

The feature can be added via the clang CLI using -mlvi-hardening.

Differential Revision: https://reviews.llvm.org/D75936
2020-05-11 13:08:35 -07:00
Zola Bridges bf95cf4a68 [x86][seses] Introduce SESES pass for LVI
This is an implementation of Speculative Execution Side Effect
Suppression which is intended as a last resort mitigation against Load
Value Injection, LVI, a newly disclosed speculative execution side
channel vulnerability.

One pager:
https://software.intel.com/security-software-guidance/software-guidance/load-value-injection

Deep dive:
https://software.intel.com/security-software-guidance/insights/deep-dive-load-value-injection

The mitigation consists of a compiler pass that inserts an LFENCE before
each memory read instruction, memory write instruction, and the first
branch instruction in a group of terminators at the end of a basic
block. The goal is to prevent speculative execution, potentially based
on misspeculated conditions and/or containing secret data, from leaking
that data via side channels embedded in such instructions.

This is something of a last-resort mitigation: it is expected to have
extreme performance implications and it may not be a complete mitigation
due to trying to enumerate side channels.

In addition to the full version of the mitigation, this patch
implements three flags to turn off part of the mitigation. These flags
are disabled by default. The flags are not intended to result in a
secure variant of the mitigation. The flags are intended to be used by
users who would like to experiment with improving the performance of
the mitigation. I ran benchmarks with each of these flags enabled in
order to find if there was any room for further optimization of LFENCE
placement with respect to LVI.

Performance Testing Results

When applying this mitigation to BoringSSL, we see the following
results. These are a summary/aggregation of the performance changes when
this mitigation is applied versus when no mitigation is applied.

Fully Mitigated vs Baseline
Geometric mean
0.071 (Note: This can be read as the ops/s of the mitigated
program was 7.1% of the ops/s of the unmitigated program.)
Minimum
0.041
Quartile 1
0.060
Median
0.063
Quartile 3
0.077
Maximum
0.230

Reviewed By: george.burgess.iv

Differential Revision: https://reviews.llvm.org/D75939
2020-05-11 09:34:37 -07:00
Serguei Katkov 4275eb1331 Re-land [Codegen/Statepoint] Allow usage of registers for non gc deopt values.
The change introduces the usage of physical registers for non-gc deopt values.
This require runtime support to know how to take a value from register.
By default usage is off and can be switched on by option.

The change also introduces additional fix-up patch which forces the spilling
of caller saved registers (clobbered after the call) and re-writes statepoint
to use spill slots instead of caller saved registers.

Reviewers: reames, danstrushin
Reviewed By: dantrushin
Subscribers: mgorny, hiraditya, mgrang, llvm-commits
Differential Revision: https://reviews.llvm.org/D77797
2020-04-10 10:13:39 +07:00
Craig Topper 1d42c0db9a Revert "[X86] Add a Pass that builds a Condensed CFG for Load Value Injection (LVI) Gadgets"
This reverts commit c74dd640fd.

Reverting to address coding standard issues raised in post-commit
review.
2020-04-03 16:56:08 -07:00
Scott Constable c74dd640fd [X86] Add a Pass that builds a Condensed CFG for Load Value Injection (LVI) Gadgets
Adds a new data structure, ImmutableGraph, and uses RDF to find LVI gadgets and add them to a MachineGadgetGraph.

More specifically, a new X86 machine pass finds Load Value Injection (LVI) gadgets consisting of a load from memory (i.e., SOURCE), and any operation that may transmit the value loaded from memory over a covert channel, or use the value loaded from memory to determine a branch/call target (i.e., SINK).

Also adds a new target feature to X86: +lvi-load-hardening

The feature can be added via the clang CLI using -mlvi-hardening.

Differential Revision: https://reviews.llvm.org/D75936
2020-04-03 13:02:04 -07:00
Scott Constable f95a67d8b8 [X86] Add RET-hardening Support to mitigate Load Value Injection (LVI)
Adding a pass that replaces every ret instruction with the sequence:

pop <scratch-reg>
lfence
jmp *<scratch-reg>

where <scratch-reg> is some available scratch register, according to the
calling convention of the function being mitigated.

Differential Revision: https://reviews.llvm.org/D75935
2020-04-03 12:08:34 -07:00
Scott Constable 71e8021d82 [X86][NFC] Generalize the naming of "Retpoline Thunks" and related code to "Indirect Thunks"
There are applications for indirect call/branch thunks other than retpoline for Spectre v2, e.g.,

https://software.intel.com/security-software-guidance/software-guidance/load-value-injection

Therefore it makes sense to refactor X86RetpolineThunks as a more general capability.

Differential Revision: https://reviews.llvm.org/D76810
2020-04-02 21:55:13 -07:00
Fangrui Song 9a24488cb6 [CodeGen] Move fentry-insert, xray-instrumentation and patchable-function before addPreEmitPass()
This intention is to move patchable-function before aarch64-branch-targets
(configured in AArch64PassConfig::addPreEmitPass) so that we emit BTI before NOPs
(see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92424).

This also allows addPreEmitPass() passes to know the precise instruction sizes if they want.

Tried x86-64 Debug/Release builds of ccls with -fxray-instrument -fxray-instruction-threshold=1.
No output difference with this commit and the previous commit.
2020-01-19 00:09:46 -08:00
Liu, Chen3 8fdafb7dce Insert wait instruction after X87 instructions which could raise
float-point exception.

This patch also modify some mayRaiseFPException flag which set in D68854.

Differential Revision: https://reviews.llvm.org/D72750
2020-01-16 12:12:51 +08:00
Hiroshi Yamauchi d9ae493937 [PGO][PGSO] Instrument the code gen / target passes.
Summary:
Split off of D67120.

Add the profile guided size optimization instrumentation / queries in the code
gen or target passes. This doesn't enable the size optimizations in those passes
yet as they are currently disabled in shouldOptimizeForSize (for non-IR pass
queries).

A second try after reverted D71072.

Reviewers: davidxl

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71149
2019-12-09 12:42:59 -08:00
Hiroshi Yamauchi 2eb30fafa5 Revert "[PGO][PGSO] Instrument the code gen / target passes."
This reverts commit 9a0b5e1407.

This seems to break buildbots.
2019-12-06 12:17:32 -08:00
Hiroshi Yamauchi 9a0b5e1407 [PGO][PGSO] Instrument the code gen / target passes.
Summary:
Split off of D67120.

Add the profile guided size optimization instrumentation / queries in the code
gen or target passes. This doesn't enable the size optimizations in those passes
yet as they are currently disabled in shouldOptimizeForSize (for non-IR pass
queries).

Reviewers: davidxl

Subscribers: hiraditya, llvm-commits

Tags: #llvm

Differential Revision: https://reviews.llvm.org/D71072
2019-12-06 10:43:39 -08:00
Joerg Sonnenberger 9681ea9560 Reapply r374743 with a fix for the ocaml binding
Add a pass to lower is.constant and objectsize intrinsics

This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.

The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.

Differential Revision: https://reviews.llvm.org/D65280

llvm-svn: 374784
2019-10-14 16:15:14 +00:00
Dmitri Gribenko 1a21f98ac3 Revert "Add a pass to lower is.constant and objectsize intrinsics"
This reverts commit r374743. It broke the build with Ocaml enabled:
http://lab.llvm.org:8011/builders/clang-x86_64-debian-fast/builds/19218

llvm-svn: 374768
2019-10-14 12:22:48 +00:00
Joerg Sonnenberger e4300c392d Add a pass to lower is.constant and objectsize intrinsics
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.

The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.

Differential Revision: https://reviews.llvm.org/D65280

llvm-svn: 374743
2019-10-13 23:00:15 +00:00
Matt Arsenault 9cac4e6d14 Rename ExpandISelPseudo->FinalizeISel, delay register reservation
This allows targets to make more decisions about reserved registers
after isel. For example, now it should be certain there are calls or
stack objects in the frame or not, which could have been introduced by
legalization.

Patch by Matthias Braun

llvm-svn: 363757
2019-06-19 00:25:39 +00:00
Vlad Tsyrklevich 2e1479e2f2 Delete x86_64 ShadowCallStack support
Summary:
ShadowCallStack on x86_64 suffered from the same racy security issues as
Return Flow Guard and had performance overhead as high as 13% depending
on the benchmark. x86_64 ShadowCallStack was always an experimental
feature and never shipped a runtime required to support it, as such
there are no expected downstream users.

Reviewers: pcc

Reviewed By: pcc

Subscribers: mgorny, javed.absar, hiraditya, jdoerfert, cfe-commits, #sanitizers, llvm-commits

Tags: #clang, #sanitizers, #llvm

Differential Revision: https://reviews.llvm.org/D59034

llvm-svn: 355624
2019-03-07 18:56:36 +00:00
Mircea Trofin f1a49e8525 Revert "Revert r347596 "Support for inserting profile-directed cache prefetches""
Summary:
This reverts commit d8517b96dfbd42e6a8db33c50d1fa1e58e63fbb9.

Fix: correct  the use of DenseMap.

Reviewers: davidxl, hans, wmi

Reviewed By: wmi

Subscribers: mgorny, eraman, llvm-commits

Differential Revision: https://reviews.llvm.org/D55088

llvm-svn: 347938
2018-11-30 01:01:52 +00:00
Hans Wennborg 6e3be9d12e Revert r347596 "Support for inserting profile-directed cache prefetches"
It causes asserts building BoringSSL. See https://crbug.com/91009#c3 for
repro.

This also reverts the follow-ups:
Revert r347724 "Do not insert prefetches with unsupported memory operands."
Revert r347606 "[X86] Add dependency from X86 to ProfileData after rL347596"
Revert r347607 "Add new passes to X86 pipeline tests"

llvm-svn: 347864
2018-11-29 13:58:02 +00:00
Mircea Trofin 183df14520 Add new passes to X86 pipeline tests
Summary: Fixes test failures introduced by rL347596.

Reviewers: davidxl

Reviewed By: davidxl

Subscribers: llvm-commits

Differential Revision: https://reviews.llvm.org/D54916

llvm-svn: 347607
2018-11-26 22:49:17 +00:00
Reid Kleckner 24d12c28e7 [X86] Fix pipeline tests when enabling MIR verification, NFC
llvm-svn: 345226
2018-10-24 23:52:22 +00:00
Chandler Carruth 664aa868f5 [x86/SLH] Add a real Clang flag and LLVM IR attribute for Speculative
Load Hardening.

Wires up the existing pass to work with a proper IR attribute rather
than just a hidden/internal flag. The internal flag continues to work
for now, but I'll likely remove it soon.

Most of the churn here is adding the IR attribute. I talked about this
Kristof Beyls and he seemed at least initially OK with this direction.
The idea of using a full attribute here is that we *do* expect at least
some forms of this for other architectures. There isn't anything
*inherently* x86-specific about this technique, just that we only have
an implementation for x86 at the moment.

While we could potentially expose this as a Clang-level attribute as
well, that seems like a good question to defer for the moment as it
isn't 100% clear whether that or some other programmer interface (or
both?) would be best. We'll defer the programmer interface side of this
for now, but at least get to the point where the feature can be enabled
without relying on implementation details.

This also allows us to do something that was really hard before: we can
enable *just* the indirect call retpolines when using SLH. For x86, we
don't have any other way to mitigate indirect calls. Other architectures
may take a different approach of course, and none of this is surfaced to
user-level flags.

Differential Revision: https://reviews.llvm.org/D51157

llvm-svn: 341363
2018-09-04 12:38:00 +00:00
Petar Jovanovic e2bfcd6394 Correct dwarf unwind information in function epilogue
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.
It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.

The second part is platform independent and ensures that:

* CFI instructions do not affect code generation (they are not counted as
  instructions when tail duplicating or tail merging)
* Unwind information remains correct when a function is modified by
  different passes. This is done in a late pass by analyzing information
  about cfa offset and cfa register in BBs and inserting additional CFI
  directives where necessary.

Added CFIInstrInserter pass:

* analyzes each basic block to determine cfa offset and register are valid
  at its entry and exit
* verifies that outgoing cfa offset and register of predecessor blocks match
  incoming values of their successors
* inserts additional CFI directives at basic block beginning to correct the
  rule for calculating CFA

Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.
CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.

Patch by Violeta Vukobrat.

Differential Revision: https://reviews.llvm.org/D42848

llvm-svn: 330706
2018-04-24 10:32:08 +00:00
Chandler Carruth 1f87618f8f [x86] Fix PR37100 by teaching the EFLAGS copy lowering to rewrite uses
across basic blocks in the limited cases where it is very straight
forward to do so.

This will also be useful for other places where we do some limited
EFLAGS propagation across CFG edges and need to handle copy rewrites
afterward. I think this is rapidly approaching the maximum we can and
should be doing here. Everything else begins to require either heroic
analysis to prove how to do PHI insertion manually, or somehow managing
arbitrary PHI-ing of EFLAGS with general PHI insertion. Neither of these
seem at all promising so if those cases come up, we'll almost certainly
need to rewrite the parts of LLVM that produce those patterns.

We do now require dominator trees in order to reliably diagnose patterns
that would require PHI nodes. This is a bit unfortunate but it seems
better than the completely mysterious crash we would get otherwise.

Differential Revision: https://reviews.llvm.org/D45673

llvm-svn: 330264
2018-04-18 15:13:16 +00:00
Chandler Carruth 19618fc639 [x86] Introduce a pass to begin more systematically fixing PR36028 and similar issues.
The key idea is to lower COPY nodes populating EFLAGS by scanning the
uses of EFLAGS and introducing dedicated code to preserve the necessary
state in a GPR. In the vast majority of cases, these uses are cmovCC and
jCC instructions. For such cases, we can very easily save and restore
the necessary information by simply inserting a setCC into a GPR where
the original flags are live, and then testing that GPR directly to feed
the cmov or conditional branch.

However, things are a bit more tricky if arithmetic is using the flags.
This patch handles the vast majority of cases that seem to come up in
practice: adc, adcx, adox, rcl, and rcr; all without taking advantage of
partially preserved EFLAGS as LLVM doesn't currently model that at all.

There are a large number of operations that techinaclly observe EFLAGS
currently but shouldn't in this case -- they typically are using DF.
Currently, they will not be handled by this approach. However, I have
never seen this issue come up in practice. It is already pretty rare to
have these patterns come up in practical code with LLVM. I had to resort
to writing MIR tests to cover most of the logic in this pass already.
I suspect even with its current amount of coverage of arithmetic users
of EFLAGS it will be a significant improvement over the current use of
pushf/popf. It will also produce substantially faster code in most of
the common patterns.

This patch also removes all of the old lowering for EFLAGS copies, and
the hack that forced us to use a frame pointer when EFLAGS copies were
found anywhere in a function so that the dynamic stack adjustment wasn't
a problem. None of this is needed as we now lower all of these copies
directly in MI and without require stack adjustments.

Lots of thanks to Reid who came up with several aspects of this
approach, and Craig who helped me work out a couple of things tripping
me up while working on this.

Differential Revision: https://reviews.llvm.org/D45146

llvm-svn: 329657
2018-04-10 01:41:17 +00:00
Michael Zolotukhin 8d052a0dd2 Remove MachineLoopInfo dependency from AsmPrinter.
Summary:
Currently MachineLoopInfo is used in only two places:
1) for computing IsBasicBlockInsideInnermostLoop field of MCCodePaddingContext, and it is never used.
2) in emitBasicBlockLoopComments, which is called only if `isVerbose()` is true.
Despite that, we currently have a dependency on MachineLoopInfo, which makes
pass manager to compute it and MachineDominator Tree. This patch removes the
use (1) and makes the use (2) lazy, thus avoiding some redundant
recomputations.

Reviewers: opaparo, gadi.haber, rafael, craig.topper, zvi

Subscribers: rengolin, javed.absar, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D44812

llvm-svn: 329542
2018-04-09 00:54:47 +00:00
Vlad Tsyrklevich e3446017ed Add the ShadowCallStack pass
Summary:
The ShadowCallStack pass instruments functions marked with the
shadowcallstack attribute. The instrumented prolog saves the return
address to [gs:offset] where offset is stored and updated in [gs:0].
The instrumented epilog loads/updates the return address from [gs:0]
and checks that it matches the return address on the stack before
returning.

Reviewers: pcc, vitalybuka

Reviewed By: pcc

Subscribers: cryptoad, eugenis, craig.topper, mgorny, llvm-commits, kcc

Differential Revision: https://reviews.llvm.org/D44802

llvm-svn: 329139
2018-04-04 01:21:16 +00:00
Michael Zolotukhin fb3f509e01 [XRay] Lazily compute MachineLoopInfo instead of requiring it.
Summary:
Currently X-Ray Instrumentation pass has a dependency on MachineLoopInfo
(and thus on MachineDominatorTree as well) and we have to compute them
even if X-Ray is not used. This patch changes it to a lazy computation
to save compile time by avoiding these redundant computations.

Reviewers: dberris, kubamracek

Subscribers: llvm-commits, hiraditya

Differential Revision: https://reviews.llvm.org/D44666

llvm-svn: 327999
2018-03-20 17:02:29 +00:00
Chandler Carruth 0dcee4fe7a [x86] Make the retpoline thunk insertion a machine function pass.
Summary:
This removes the need for a machine module pass using some deeply
questionable hacks. This should address PR36123 which is a case where in
full LTO the memory usage of a machine module pass actually ended up
being significant.

We should revert this on trunk as soon as we understand and fix the
memory usage issue, but we should include this in any backports of
retpolines themselves.

Reviewers: echristo, MatzeB

Subscribers: sanjoy, mcrosier, mehdi_amini, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D42726

llvm-svn: 323915
2018-01-31 20:56:37 +00:00
Chandler Carruth c58f2166ab Introduce the "retpoline" x86 mitigation technique for variant #2 of the speculative execution vulnerabilities disclosed today, specifically identified by CVE-2017-5715, "Branch Target Injection", and is one of the two halves to Spectre..
Summary:
First, we need to explain the core of the vulnerability. Note that this
is a very incomplete description, please see the Project Zero blog post
for details:
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html

The basis for branch target injection is to direct speculative execution
of the processor to some "gadget" of executable code by poisoning the
prediction of indirect branches with the address of that gadget. The
gadget in turn contains an operation that provides a side channel for
reading data. Most commonly, this will look like a load of secret data
followed by a branch on the loaded value and then a load of some
predictable cache line. The attacker then uses timing of the processors
cache to determine which direction the branch took *in the speculative
execution*, and in turn what one bit of the loaded value was. Due to the
nature of these timing side channels and the branch predictor on Intel
processors, this allows an attacker to leak data only accessible to
a privileged domain (like the kernel) back into an unprivileged domain.

The goal is simple: avoid generating code which contains an indirect
branch that could have its prediction poisoned by an attacker. In many
cases, the compiler can simply use directed conditional branches and
a small search tree. LLVM already has support for lowering switches in
this way and the first step of this patch is to disable jump-table
lowering of switches and introduce a pass to rewrite explicit indirectbr
sequences into a switch over integers.

However, there is no fully general alternative to indirect calls. We
introduce a new construct we call a "retpoline" to implement indirect
calls in a non-speculatable way. It can be thought of loosely as
a trampoline for indirect calls which uses the RET instruction on x86.
Further, we arrange for a specific call->ret sequence which ensures the
processor predicts the return to go to a controlled, known location. The
retpoline then "smashes" the return address pushed onto the stack by the
call with the desired target of the original indirect call. The result
is a predicted return to the next instruction after a call (which can be
used to trap speculative execution within an infinite loop) and an
actual indirect branch to an arbitrary address.

On 64-bit x86 ABIs, this is especially easily done in the compiler by
using a guaranteed scratch register to pass the target into this device.
For 32-bit ABIs there isn't a guaranteed scratch register and so several
different retpoline variants are introduced to use a scratch register if
one is available in the calling convention and to otherwise use direct
stack push/pop sequences to pass the target address.

This "retpoline" mitigation is fully described in the following blog
post: https://support.google.com/faqs/answer/7625886

We also support a target feature that disables emission of the retpoline
thunk by the compiler to allow for custom thunks if users want them.
These are particularly useful in environments like kernels that
routinely do hot-patching on boot and want to hot-patch their thunk to
different code sequences. They can write this custom thunk and use
`-mretpoline-external-thunk` *in addition* to `-mretpoline`. In this
case, on x86-64 thu thunk names must be:
```
  __llvm_external_retpoline_r11
```
or on 32-bit:
```
  __llvm_external_retpoline_eax
  __llvm_external_retpoline_ecx
  __llvm_external_retpoline_edx
  __llvm_external_retpoline_push
```
And the target of the retpoline is passed in the named register, or in
the case of the `push` suffix on the top of the stack via a `pushl`
instruction.

There is one other important source of indirect branches in x86 ELF
binaries: the PLT. These patches also include support for LLD to
generate PLT entries that perform a retpoline-style indirection.

The only other indirect branches remaining that we are aware of are from
precompiled runtimes (such as crt0.o and similar). The ones we have
found are not really attackable, and so we have not focused on them
here, but eventually these runtimes should also be replicated for
retpoline-ed configurations for completeness.

For kernels or other freestanding or fully static executables, the
compiler switch `-mretpoline` is sufficient to fully mitigate this
particular attack. For dynamic executables, you must compile *all*
libraries with `-mretpoline` and additionally link the dynamic
executable and all shared libraries with LLD and pass `-z retpolineplt`
(or use similar functionality from some other linker). We strongly
recommend also using `-z now` as non-lazy binding allows the
retpoline-mitigated PLT to be substantially smaller.

When manually apply similar transformations to `-mretpoline` to the
Linux kernel we observed very small performance hits to applications
running typical workloads, and relatively minor hits (approximately 2%)
even for extremely syscall-heavy applications. This is largely due to
the small number of indirect branches that occur in performance
sensitive paths of the kernel.

When using these patches on statically linked applications, especially
C++ applications, you should expect to see a much more dramatic
performance hit. For microbenchmarks that are switch, indirect-, or
virtual-call heavy we have seen overheads ranging from 10% to 50%.

However, real-world workloads exhibit substantially lower performance
impact. Notably, techniques such as PGO and ThinLTO dramatically reduce
the impact of hot indirect calls (by speculatively promoting them to
direct calls) and allow optimized search trees to be used to lower
switches. If you need to deploy these techniques in C++ applications, we
*strongly* recommend that you ensure all hot call targets are statically
linked (avoiding PLT indirection) and use both PGO and ThinLTO. Well
tuned servers using all of these techniques saw 5% - 10% overhead from
the use of retpoline.

We will add detailed documentation covering these components in
subsequent patches, but wanted to make the core functionality available
as soon as possible. Happy for more code review, but we'd really like to
get these patches landed and backported ASAP for obvious reasons. We're
planning to backport this to both 6.0 and 5.0 release streams and get
a 5.0 release with just this cherry picked ASAP for distros and vendors.

This patch is the work of a number of people over the past month: Eric, Reid,
Rui, and myself. I'm mailing it out as a single commit due to the time
sensitive nature of landing this and the need to backport it. Huge thanks to
everyone who helped out here, and everyone at Intel who helped out in
discussions about how to craft this. Also, credit goes to Paul Turner (at
Google, but not an LLVM contributor) for much of the underlying retpoline
design.

Reviewers: echristo, rnk, ruiu, craig.topper, DavidKreitzer

Subscribers: sanjoy, emaste, mcrosier, mgorny, mehdi_amini, hiraditya, llvm-commits

Differential Revision: https://reviews.llvm.org/D41723

llvm-svn: 323155
2018-01-22 22:05:25 +00:00
Oren Ben Simhon 1c6308ecd5 Instrument Control Flow For Indirect Branch Tracking
CET (Control-Flow Enforcement Technology) introduces a new mechanism called IBT (Indirect Branch Tracking).
According to IBT, each Indirect branch should land on dedicated ENDBR instruction (End Branch).
The new pass adds ENDBR instructions for every indirect jmp/call (including jumps using jump tables / switches).
For more information, please see the following:
https://software.intel.com/sites/default/files/managed/4d/2a/control-flow-enforcement-technology-preview.pdf

Differential Revision: https://reviews.llvm.org/D40482

Change-Id: Icb754489faf483a95248f96982a4e8b1009eb709
llvm-svn: 322062
2018-01-09 08:51:18 +00:00
Hans Wennborg e1ecd61b98 Rename CountingFunctionInserter and use for both mcount and cygprofile calls, before and after inlining
Clang implements the -finstrument-functions flag inherited from GCC, which
inserts calls to __cyg_profile_func_{enter,exit} on function entry and exit.

This is useful for getting a trace of how the functions in a program are
executed. Normally, the calls remain even if a function is inlined into another
function, but it is useful to be able to turn this off for users who are
interested in a lower-level trace, i.e. one that reflects what functions are
called post-inlining. (We use this to generate link order files for Chromium.)

LLVM already has a pass for inserting similar instrumentation calls to
mcount(), which it does after inlining. This patch renames and extends that
pass to handle calls both to mcount and the cygprofile functions, before and/or
after inlining as controlled by function attributes.

Differential Revision: https://reviews.llvm.org/D39287

llvm-svn: 318195
2017-11-14 21:09:45 +00:00
Reid Kleckner 7adb2fdbba Revert "Correct dwarf unwind information in function epilogue for X86"
This reverts r317579, originally committed as r317100.

There is a design issue with marking CFI instructions duplicatable. Not
all targets support the CFIInstrInserter pass, and targets like Darwin
can't cope with duplicated prologue setup CFI instructions. The compact
unwind info emission fails.

When the following code is compiled for arm64 on Mac at -O3, the CFI
instructions end up getting tail duplicated, which causes compact unwind
info emission to fail:
  int a, c, d, e, f, g, h, i, j, k, l, m;
  void n(int o, int *b) {
    if (g)
      f = 0;
    for (; f < o; f++) {
      m = a;
      if (l > j * k > i)
        j = i = k = d;
      h = b[c] - e;
    }
  }

We get assembly that looks like this:
; BB#1:                                 ; %if.then
Lloh3:
	adrp	x9, _f@GOTPAGE
Lloh4:
	ldr	x9, [x9, _f@GOTPAGEOFF]
	mov	 w8, wzr
Lloh5:
	str		wzr, [x9]
	stp	x20, x19, [sp, #-16]!   ; 8-byte Folded Spill
	.cfi_def_cfa_offset 16
	.cfi_offset w19, -8
	.cfi_offset w20, -16
	cmp		w8, w0
	b.lt	LBB0_3
	b	LBB0_7
LBB0_2:                                 ; %entry.if.end_crit_edge
Lloh6:
	adrp	x8, _f@GOTPAGE
Lloh7:
	ldr	x8, [x8, _f@GOTPAGEOFF]
Lloh8:
	ldr		w8, [x8]
	stp	x20, x19, [sp, #-16]!   ; 8-byte Folded Spill
	.cfi_def_cfa_offset 16
	.cfi_offset w19, -8
	.cfi_offset w20, -16
	cmp		w8, w0
	b.ge	LBB0_7
LBB0_3:                                 ; %for.body.lr.ph

Note the multiple .cfi_def* directives. Compact unwind info emission
can't handle that.

llvm-svn: 317726
2017-11-08 21:31:14 +00:00
Petar Jovanovic e2a585dddc Reland "Correct dwarf unwind information in function epilogue for X86"
Reland r317100 with minor fix regarding ComputeCommonTailLength function in
BranchFolding.cpp. Skipping top CFI instructions block needs to executed on
several more return points in ComputeCommonTailLength().

Original r317100 message:

"Correct dwarf unwind information in function epilogue for X86"

This patch aims to provide correct dwarf unwind information in function
epilogue for X86.

It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.

The second part is platform independent and ensures that:

- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
  different passes. This is done in a late pass by analyzing information
  about cfa offset and cfa register in BBs and inserting additional CFI
  directives where necessary.

Changed CFI instructions so that they:

- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal

Added CFIInstrInserter pass:

- analyzes each basic block to determine cfa offset and register valid at
  its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
  incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
  rule for calculating CFA

Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.

CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.

Patch by Violeta Vukobrat.

llvm-svn: 317579
2017-11-07 14:40:27 +00:00
Petar Jovanovic bb5c84fb57 Revert "Correct dwarf unwind information in function epilogue for X86"
This reverts r317100 as it introduced sanitizer-x86_64-linux-autoconf
buildbot failure (build #15606).

llvm-svn: 317136
2017-11-01 23:05:52 +00:00
Petar Jovanovic f2faee92aa Correct dwarf unwind information in function epilogue for X86
This patch aims to provide correct dwarf unwind information in function
epilogue for X86.

It consists of two parts. The first part inserts CFI instructions that set
appropriate cfa offset and cfa register in emitEpilogue() in
X86FrameLowering. This part is X86 specific.

The second part is platform independent and ensures that:

- CFI instructions do not affect code generation
- Unwind information remains correct when a function is modified by
  different passes. This is done in a late pass by analyzing information
  about cfa offset and cfa register in BBs and inserting additional CFI
  directives where necessary.

Changed CFI instructions so that they:

- are duplicable
- are not counted as instructions when tail duplicating or tail merging
- can be compared as equal

Added CFIInstrInserter pass:

- analyzes each basic block to determine cfa offset and register valid at
  its entry and exit
- verifies that outgoing cfa offset and register of predecessor blocks match
  incoming values of their successors
- inserts additional CFI directives at basic block beginning to correct the
  rule for calculating CFA

Having CFI instructions in function epilogue can cause incorrect CFA
calculation rule for some basic blocks. This can happen if, due to basic
block reordering, or the existence of multiple epilogue blocks, some of the
blocks have wrong cfa offset and register values set by the epilogue block
above them.

CFIInstrInserter is currently run only on X86, but can be used by any target
that implements support for adding CFI instructions in epilogue.


Patch by Violeta Vukobrat.

Differential Revision: https://reviews.llvm.org/D35844

llvm-svn: 317100
2017-11-01 16:04:11 +00:00
Francis Visoiu Mistrih 52042aa21e [PEI] Add basic opt-remarks support
Add optimization remarks support to the PrologueEpilogueInserter. For
now, emit the stack size as an analysis remark, but more additions wrt
shrink-wrapping may be added.

https://reviews.llvm.org/D35645

llvm-svn: 308556
2017-07-19 23:47:32 +00:00
Daniel Jasper 559aa75382 Revert "r306529 - [X86] Correct dwarf unwind information in function epilogue"
I am 99% sure that this breaks the PPC ASAN build bot:
http://lab.llvm.org:8011/builders/sanitizer-ppc64be-linux/builds/3112/steps/64-bit%20check-asan/logs/stdio

If it doesn't go back to green, we can recommit (and fix the original
commit message at the same time :) ).

llvm-svn: 306676
2017-06-29 13:58:24 +00:00
Petar Jovanovic 7b3a38ec30 [X86] Correct dwarf unwind information in function epilogue
CFI instructions that set appropriate cfa offset and cfa register are now
inserted in emitEpilogue() in X86FrameLowering.

Majority of the changes in this patch:

1. Ensure that CFI instructions do not affect code generation.
2. Enable maintaining correct information about cfa offset and cfa register
in a function when basic blocks are reordered, merged, split, duplicated.

These changes are target independent and described below.

Changed CFI instructions so that they:

1. are duplicable
2. are not counted as instructions when tail duplicating or tail merging
3. can be compared as equal

Add information to each MachineBasicBlock about cfa offset and cfa register
that are valid at its entry and exit (incoming and outgoing CFI info). Add
support for updating this information when basic blocks are merged, split,
duplicated, created. Add a verification pass (CFIInfoVerifier) that checks
that outgoing cfa offset and register of predecessor blocks match incoming
values of their successors.

Incoming and outgoing CFI information is used by a late pass
(CFIInstrInserter) that corrects CFA calculation rule for a basic block if
needed. That means that additional CFI instructions get inserted at basic
block beginning to correct the rule for calculating CFA. Having CFI
instructions in function epilogue can cause incorrect CFA calculation rule
for some basic blocks. This can happen if, due to basic block reordering,
or the existence of multiple epilogue blocks, some of the blocks have wrong
cfa offset and register values set by the epilogue block above them.

Patch by Violeta Vukobrat.

Differential Revision: https://reviews.llvm.org/D18046

llvm-svn: 306529
2017-06-28 10:21:17 +00:00
Matthias Braun c7c06f158c CodeGen/LLVMTargetMachine: Refactor ISel pass construction; NFCI
- Move ISel (and pre-isel) pass construction into TargetPassConfig
- Extract AsmPrinter construction into a helper function

Putting the ISel code into TargetPassConfig seems a lot more natural and
both changes together make make it easier to build custom pipelines
involving .mir in an upcoming commit. This moves MachineModuleInfo to an
earlier place in the pass pipeline which shouldn't have any effect.

llvm-svn: 304754
2017-06-06 00:26:13 +00:00
Francis Visoiu Mistrih 8b61764cbb [LegacyPassManager] Remove TargetMachine constructors
This provides a new way to access the TargetMachine through
TargetPassConfig, as a dependency.

The patterns replaced here are:

* Passes handling a null TargetMachine call
  `getAnalysisIfAvailable<TargetPassConfig>`.

* Passes not handling a null TargetMachine
  `addRequired<TargetPassConfig>` and call
  `getAnalysis<TargetPassConfig>`.

* MachineFunctionPasses now use MF.getTarget().

* Remove all the TargetMachine constructors.
* Remove INITIALIZE_TM_PASS.

This fixes a crash when running `llc -start-before prologepilog`.

PEI needs StackProtector, which gets constructed without a TargetMachine
by the pass manager. The StackProtector pass doesn't handle the case
where there is no TargetMachine, so it segfaults.

Related to PR30324.

Differential Revision: https://reviews.llvm.org/D33222

llvm-svn: 303360
2017-05-18 17:21:13 +00:00
Ayman Musa c5490e5a29 [X86] Relocate code of replacement of subtarget unsupported masked memory intrinsics to run also on -O0 option.
Currently, when masked load, store, gather or scatter intrinsics are used, we check in CodeGenPrepare pass if the subtarget support these intrinsics, if not we replace them with scalar code - this is a functional transformation not an optimization (not optional).

CodeGenPrepare pass does not run when the optimization level is set to CodeGenOpt::None (-O0).

Functional transformation should run with all optimization levels, so here I created a new pass which runs on all optimization levels and does no more than this transformation.

Differential Revision: https://reviews.llvm.org/D32487

llvm-svn: 303050
2017-05-15 11:30:54 +00:00
Amara Emerson 836b0f48c1 Add a late IR expansion pass for the experimental reduction intrinsics.
This pass uses a new target hook to decide whether or not to expand a particular
intrinsic to the shuffevector sequence.

Differential Revision: https://reviews.llvm.org/D32245

llvm-svn: 302631
2017-05-10 09:42:49 +00:00
Ahmed Bougacha a09ff59cc2 [CodeGen] Don't require AA in TwoAddress at -O0.
This is a follow-up to r302611, which moved an -O0 computation of DT
from SDAGISel to TwoAddress.

Don't use it here either, and avoid computing it completely.  The only
use was forwarding the analysis as an optional argument to utility
functions.

Differential Revision: https://reviews.llvm.org/D32766

llvm-svn: 302612
2017-05-10 00:56:00 +00:00