TLS initializers, for example constructors of thread-local variables, don't necessarily get called. If a thread was created before a module is loaded, the module's TLS initializers are not executed for this particular thread.
This is why Microsoft added support for dynamic TLS initialization. Before every use of thread-local variables, a check is added that runs the module's TLS initializers on-demand.
To do this, the method `__dyn_tls_on_demand_init` gets called. Internally, it simply calls `__dyn_tls_init`.
No additional TLS initializer that sets the guard needs to be emitted, as the guard always gets set by `__dyn_tls_init`.
The guard is also checked again within `__dyn_tls_init`. This makes our check redundant, however, as Microsoft's compiler also emits this check, the behaviour is adopted here.
Reviewed By: majnemer
Differential Revision: https://reviews.llvm.org/D115456
When `-ftrivial-auto-var-init=` is enabled, allocas unconditionally
receive auto-initialization since [1].
In certain cases, it turns out, this is causing problems. For example,
when using alloca to add a random stack offset, as the Linux kernel does
on syscall entry [2]. In this case, none of the alloca'd stack memory is
ever used, and initializing it should be controllable; furthermore, it
is not always possible to safely call memset (see [2]).
Introduce `__builtin_alloca_uninitialized()` (and
`__builtin_alloca_with_align_uninitialized`), which never performs
initialization when `-ftrivial-auto-var-init=` is enabled.
[1] https://reviews.llvm.org/D60548
[2] https://lkml.kernel.org/r/YbHTKUjEejZCLyhX@elver.google.com
Reviewed By: glider
Differential Revision: https://reviews.llvm.org/D115440
When calling emitArrayDestroy(), the pointer will usually have
ConvertTypeForMem(EltType) as the element type, as one would expect.
However, globals with initializers sometimes don't use the same
types as values normally would, e.g. here the global uses
{ double, i32 } rather than %struct.T as element type.
Add an early cast to the global destruction path to avoid this
special case. The cast would happen lateron anyway, it only gets
moved to an earlier point.
Differential Revision: https://reviews.llvm.org/D116219
This implements the clang side of D116531. The elementtype
attribute is added for all indirect constraints (*) and tests are
updated accordingly.
Differential Revision: https://reviews.llvm.org/D116666
This reverts commit 640beb38e7.
That commit caused performance degradtion in Quicksilver test QS:sGPU and a functional test failure in (rocPRIM rocprim.device_segmented_radix_sort).
Reverting until we have a better solution to s_cselect_b64 codegen cleanup
Change-Id: Ibf8e397df94001f248fba609f072088a46abae08
Reviewed By: kzhuravl
Differential Revision: https://reviews.llvm.org/D115960
Change-Id: Id169459ce4dfffa857d5645a0af50b0063ce1105
This builds on the code from D114963, and extends it to handle calls both direct and indirect. With the revised code structure (from series of previously landed NFCs), this is pretty straight forward.
One thing to note is that we can not infer writeonly for arguments which might be captured. If the pointer can be read back by the caller, and then read through, we have no way to track that. This is the same restriction we have for readonly, except that we get no mileage out of the "callee can be readonly" exception since a writeonly param on a readonly function is either a) readnone or b) UB. This means we can't actually infer much unless nocapture has already been inferred.
Differential Revision: https://reviews.llvm.org/D115003
The fold for merging a GEP of GEP into a single GEP currently bails
if doing so would result in notional overindexing. The justification
given in the comment above this check is dangerously incorrect: GEPs
with notional overindexing are perfectly fine, and if some code
treats them incorrectly, then that code is broken, not the GEP.
Such a GEP might legally appear in source IR, so only preventing
its creation cannot be sufficient. (The constant folder also ends
up canonicalizing the GEP to remove the notional overindexing, but
that's neither here nor there.)
This check dates back to
bd4fef4a89,
and as far as I can tell the original issue this was trying to
patch around has since been resolved.
Differential Revision: https://reviews.llvm.org/D116587
Reland integrates build fixes & further review suggestions.
Thanks to @zturner for the initial S_OBJNAME patch!
Differential Revision: https://reviews.llvm.org/D43002
Also revert all subsequent fixes:
- abd1cbf5e5 [Clang] Disable debug-info-objname.cpp test on Unix until I sort out the issue.
- 00ec441253 [Clang] debug-info-objname.cpp test: explictly encode a x86 target when using %clang_cl to avoid falling back to a native CPU triple.
- cd407f6e52 [Clang] Fix build by restricting debug-info-objname.cpp test to x86.
Summary: This patch records the access flag for
class/struct/union types in the clang part.
The summary of binary size change and debug info size change due to the DW_AT_accessibility attribute are as the following table. They are built with flags of `clang -O0 -g` (no -gz).
| section | before | after | change | % |
| .debug_loc | 929821 | 929821 |0|0|
|.debug_abbrev | 5885289 | 5971547 |+86258|+1.466%|
|.debug_info | 497613455 | 498122074 |+508619|+0.102%|
|.debug_ranges | 45731664 | 45731664 |0|0|
|.debug_str | 233842595 | 233839388 |-3207| -0.001%|
|.debug_line | 149773166 | 149764583 |-8583|-0.006%|
|total (debug) |933775990 |934359077|+583087 |+0.062%|
|total (binary) |1394617288 | 1395200024| +582736|+0.042%|
Reviewed By: dblaikie, shchenz
Differential Revision: https://reviews.llvm.org/D115503
This implements p2085, allowing out-of-class defaulting of comparison
operators, primarily so they need not be inline, IIUC intent. this was
mostly straigh forward, but required reimplementing
Sema::CheckExplicitlyDefaultedComparison, as now there's a case where
we have no a priori clue as to what class a defaulted comparison may
be for. We have to inspect the parameter types to find out. Eg:
class X { ... };
bool operator==(X, X) = default;
Thus reimplemented the parameter type checking, and added 'is this a
friend' functionality for the above case.
Reviewed By: mizvekov
Differential Revision: https://reviews.llvm.org/D104478
There are instances where clang codegen creates stores to
address space 4 in ctors, which causes a crash in llc.
This store was being optimized out at opt levels > 0.
For example:
pragma omp declare target
static const double log_smallx = log2(smallx);
pragma omp end declare target
This patch ensures that any global const that does not
have constant initialization stays in address space 1.
Note - a second patch is in the works where all global
constants are placed in address space 1 during
codegen and then the opt pass InferAdressSpaces
will promote to address space 4 where necessary.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D115661
According to [module.unit]p7.2.3, a declaration within a linkage-specification
should be attached to the global module.
This let user to forward declare types across modules.
Reviewed by: rsmith, aaron.ballman
Differential Revision: https://reviews.llvm.org/D110215
WG14 adopted the _ExtInt feature from Clang for C23, but renamed the
type to be _BitInt. This patch does the vast majority of the work to
rename _ExtInt to _BitInt, which accounts for most of its size. The new
type is exposed in older C modes and all C++ modes as a conforming
extension. However, there are functional changes worth calling out:
* Deprecates _ExtInt with a fix-it to help users migrate to _BitInt.
* Updates the mangling for the type.
* Updates the documentation and adds a release note to warn users what
is going on.
* Adds new diagnostics for use of _BitInt to call out when it's used as
a Clang extension or as a pre-C23 compatibility concern.
* Adds new tests for the new diagnostic behaviors.
I want to call out the ABI break specifically. We do not believe that
this break will cause a significant imposition for early adopters of
the feature, and so this is being done as a full break. If it turns out
there are critical uses where recompilation is not an option for some
reason, we can consider using ABI tags to ease the transition.
With C++17 the exception specification has been made part of the
function type, and therefore part of mangled type names.
However, it's valid to convert function pointers with an exception
specification to function pointers with the same argument and return
types but without an exception specification, which means that e.g. a
function of type "void () noexcept" can be called through a pointer
of type "void ()". We must therefore consider the two types to be
compatible for CFI purposes.
We can do this by stripping the exception specification before mangling
the type name, which is what this patch does.
Differential Revision: https://reviews.llvm.org/D115015
Allow toggling of -fnew-infallible so last instance takes precedence
Testing:
ninja check-all
Reviewed By: bruno
Differential Revision: https://reviews.llvm.org/D113523
We've found that when profiling, counts are only generated for the real definition of constructor aliases (C2 in mangled name). However, when compiling the C1 version is present at the callsite and leads to a lack of counts due to this aliasing. This causes us to miss out on inlining an otherwise hot constructor.
-mconstructor-aliases is AFAICT an optimization, so having a disabling flag if wanted seems valuable.
Testing:
ninja check-all
Reviewed By: wenlei
Differential Revision: https://reviews.llvm.org/D114130
See discussion in D51650, this change was a little aggressive in an
error while doing a 'while we were here', so this removes that error
condition, as it is apparently useful.
This reverts commit bb4934601d.
c17d9b4b12 added REQUIRES lines to a lot of Arm and AArch64
test, but added them to the very beginning, before the existing
update_cc_test_checks lines. This just moves them later so as to not
mess up the existing ordering when the checks are regenerated.
As discussed here: https://lwn.net/Articles/691932/
GCC6.0 adds target_clones multiversioning. This functionality is
an odd cross between the cpu_dispatch and 'target' MV, but is compatible
with neither.
This attribute allows you to list all options, then emits a separately
optimized version of each function per-option (similar to the
cpu_specific attribute). It automatically generates a resolver, just
like the other two.
The mangling however, is... ODD to say the least. The mangling format
is:
<normal_mangling>.<option string>.<option ordinal>.
Differential Revision:https://reviews.llvm.org/D51650
at the start of the entry block, which in turn would aid better code transformation/optimization.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D110257
This splits out the generated headers and conditonalises them upon the
target being enabled.
The motivation here is that the RISCV header alone added 10MB to the
resource directory, which was previously at 10MB, increasing the build
size and time. This header is contributing ~50% of the size of the
resource headers (~10MB).
The ARM generated headers are contributing about ~10% or 1MB.
This could be extended further adding only the static resource headers
for the targets that the LLVM build supports.
The changes to the tests for ARM mirror what the RISCV target already
did and rnk identified as a possible issue.
Testing:
cmake -G Ninja -D LLVM_TARGETS_TO_BUILD=X86 -D LLVM_ENABLE_PROJECTS="clang;lld" ../clang
ninja check-clang
Differential Revision: https://reviews.llvm.org/D112890
Reviewed By: craig.topper
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.
Test updates are made as a separate patch: D108453
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105169
[Clang/Test]: Rename enable_noundef_analysis to disable-noundef-analysis and turn it off by default (2)
This patch updates test files after D105169.
Autogenerated test codes are changed by `utils/update_cc_test_checks.py,` and non-autogenerated test codes are changed as follows:
(1) I wrote a python script that (partially) updates the tests using regex: {F18594904} The script is not perfect, but I believe it gives hints about which patterns are updated to have `noundef` attached.
(2) The remaining tests are updated manually.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108453
Resolve lit failures in clang after 8ca4b3e's land
Fix lit test failures in clang-ppc* and clang-x64-windows-msvc
Fix missing failures in clang-ppc64be* and retry fixing clang-x64-windows-msvc
Fix internal_clone(aarch64) inline assembly
The structured bindings decomposition of a non-dependent array in a dependent context (a template) were, upon instantiation, creating nested OpaqueValueExprs that would trigger assertions in CodeGen. Additionally the OpaqueValuesExpr's contained SourceExpr is being emitted in CodeGen, but there was no code for its transform in template instantiation. This would trigger other assertions such as when emitting a DeclRefExpr that refers to a VarDecl that is not marked as ODR-used.
This is all based on cursory deduction, but with the way the code flows from SemaTemplateInstantiate back to SemaInit, it is apparent that the nesting of OpaqueValueExpr is unintentional.
This commit fixes https://bugs.llvm.org/show_bug.cgi?id=45964 and possible other issues involving OpaqueValueExprs in template instantiations might be resolved.
Reviewed By: aaron.ballman, rjmccall
Differential Revision: https://reviews.llvm.org/D108482
Turning on `enable_noundef_analysis` flag allows better codegen by removing freeze instructions.
I modified clang by renaming `enable_noundef_analysis` flag to `disable-noundef-analysis` and turning it off by default.
Test updates are made as a separate patch: D108453
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D105169
Now in libcxx and clang, all the coroutine components are defined in
std::experimental namespace.
And now the coroutine TS is merged into C++20. So in the working draft
like N4892, we could find the coroutine components is defined in std
namespace instead of std::experimental namespace.
And the coroutine support in clang seems to be relatively stable. So I
think it may be suitable to move the coroutine component into the
experiment namespace now.
This patch would make clang lookup coroutine_traits in std namespace
first. For the compatibility consideration, clang would lookup in
std::experimental namespace if it can't find definitions in std
namespace. So the existing codes wouldn't be break after update
compiler.
And in case the compiler found std::coroutine_traits and
std::experimental::coroutine_traits at the same time, it would emit an
error for it.
The support for looking up std::experimental::coroutine_traits would be
removed in Clang16.
Reviewed By: lxfind, Quuxplusone
Differential Revision: https://reviews.llvm.org/D108696
This patch reverts incorrect IR introduced in commit d11ec6f67e
[Clang] Enable IC/IF mode for __ibm128, for complex types declared
using __attribute__((mode(TC))). TC corresponds to an unspecified
128-bit format, which on some targets is a double-double format
(like __ibm128_t) and on others is float128_t. The bug in d11ec6f67e
is that long double is only safe to use when it's known to be one of
these formats.
Differential Revision: https://reviews.llvm.org/D112975
There's a nuanced check about when to use suffixes on these integer
non-type-template-parameters, but when rebuilding names for
-gsimple-template-names there isn't enough data in the DWARF to
determine when to use suffixes or not. So turn on suffixes always to
make it easy to match up names in llvm-dwarfdump --verify.
I /think/ if we correctly modelled auto non-type-template parameters
maybe we could put suffixes only on those. But there's also some logic
in Clang that puts the suffixes on overloaded functions - at least
that's what the parameter says (see D77598 and printTemplateArguments
"TemplOverloaded" parameter) - but I think maybe it's for anything that
/can/ be overloaded, not necessarily only the things that are overloaded
(the argument value is hardcoded at the various callsites, doesn't seem
to depend on overload resolution/searching for overloaded functions). So
maybe with "auto" modeled more accurately, and differentiating between
function templates (always using type suffixes there) and class/variable
templates (only using the suffix for "auto" types) we could correctly
use integer type suffixes only in the minimal set of cases.
But that seems all too much fuss, so let's just put integer type
suffixes everywhere always in the debug info of integer non-type
template parameters in template names.
(more context:
* https://reviews.llvm.org/D77598#inline-1057607
* https://groups.google.com/g/llvm-dev/c/ekLMllbLIZg/m/-dhJ0hO1AAAJ )
Differential Revision: https://reviews.llvm.org/D111477
Upon further investigation and discussion,
this is actually the opposite direction from what we should be taking,
and this direction wouldn't solve the motivational problem anyway.
Additionally, some more (polly) tests have escaped being updated.
So, let's just take a step back here.
This reverts commit f3190dedee.
This reverts commit 749581d21f.
This reverts commit f3df87d57e.
This reverts commit ab1dbcecd6.
There's precedent for that in `CreateOr()`/`CreateAnd()`.
The motivation here is to avoid bloating the run-time check's IR
in `SCEVExpander::generateOverflowCheck()`.
Refs. https://reviews.llvm.org/D109368#3089809
While we could emit such a tautological `select`,
it will stick around until the next instsimplify invocation,
which may happen after we count the cost of this redundant `select`.
Which is precisely what happens with loop vectorization legality checks,
and that artificially increases the cost of said checks,
which is bad.
There is prior art for this in `IRBuilderBase::CreateAnd()`/`IRBuilderBase::CreateOr()`.
Refs. https://reviews.llvm.org/D109368#3089809
This patch splits the existing SveVectorBits LangOpt into VScaleMin and
VScaleMax LangOpts such that we can represent such an option. The cc1
option has also been split into -mvscale-{min,max}=<n> options so that the
cc1 arguments better reflect the vscale_range IR attribute.
Differential Revision: https://reviews.llvm.org/D111790
This reverts commit 121b2252de.
The following code causes a crash in some circumstances:
struct k {
~k() __attribute__((annotate(""))) {}
};
void m() { k(); }
Originally I thought that I needed to do a #include to trick the
compiler into letting me use typeid I believe, but Aaron explained that
it was just looking for the type_info type. I had to give it some
public/private members to make it emit the same as before, but this
ought to be a 'perfect' replacement.
Now that the legacy PM is deprecated for the optimization pipeline, we
can start deleting legacy PM tests.
For tests that test both PMs, merge the RUN lines.
Delete tests specific to the legacy PM.
This patch updates test files after D105169.
Autogenerated test codes are changed by `utils/update_cc_test_checks.py,` and non-autogenerated test codes are changed as follows:
(1) I wrote a python script that (partially) updates the tests using regex: {F18594904} The script is not perfect, but I believe it gives hints about which patterns are updated to have `noundef` attached.
(2) The remaining tests are updated manually.
Reviewed By: eugenis
Differential Revision: https://reviews.llvm.org/D108453
This patch remove the override in AIX target,
so the int128 is enabled in 64 bit mode or with ForceEnableInt128.
Reviewed By: lkail
Differential Revision: https://reviews.llvm.org/D111078
Not all constants are emitted within the context of a function, so use
the module's ASTContext instead because 1) that's the same as the
current function ASTContext, and 2) the module can never be null.
Fixes PR50787.
This implements the new implicit conversion sequence to an incomplete
(unbounded) array type. It is mostly Richard Smith's work, updated to
trunk, testcases added and a few bugs fixed found in such testing.
It is not a complete implementation of p0388.
Differential Revision: https://reviews.llvm.org/D102645
When AnnotateAttr is on a function, AddGlobalAnnotations is only called
in CodeGenModule::EmitGlobalFunctionDefinition which means AnnotateAttr
on function declaration without function body will be ignored.
The patch will move AddGlobalAnnotations to
CodeGenModule::SetFunctionAttributes, so with or without function body,
the AnnotateAttr will get code gen for a function.
It'll help case when AnnotateAttr is on external function, and the
AnnotateAttr will be consumed in IR level.
For example, a pass to collect num of uses for functions with
__attribute((annotate("count_use"))) after optimizations,
As long as there's __attribute((annotate("count_use"))), function with
or without function body should be counted.
Reviewed By: aaron.ballman
Differential Revision: https://reviews.llvm.org/D111109
Patch by: python3kgae (Xiang Li)
As for 128-bit floating points on PowerPC, compiler should have three
machine modes:
- IFmode, always IBM extended double
- KFmode, always IEEE 754R 128-bit floating point
- TFmode, matches the semantics for long double
This commit adds support for IF mode with its complex variant, IC mode.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D109950
In this case, we know statically that we're destroying the most-derived
class, so the vptr must already point to the current class and never
needs to be updated.
This reverts c7f16ab3e3 / r109694 - which
suggested this was done to improve consistency with the gdb test suite.
Possible that at the time GCC did not canonicalize integer types, and so
matching types was important for cross-compiler validity, or that it was
only a case of over-constrained test cases that printed out/tested the
exact names of integer types.
In any case neither issue seems to exist today based on my limited
testing - both gdb and lldb canonicalize integer types (in a way that
happens to match Clang's preferred naming, incidentally) and so never
print the original text name produced in the DWARF by GCC or Clang.
This canonicalization appears to be in `integer_types_same_name_p` for
GDB and in `TypeSystemClang::GetBasicTypeEnumeration` for lldb.
(I tested this with one translation unit defining 3 variables - `long`,
`long (*)()`, and `int (*)()`, and another translation unit that had
main, and a function that took `long (*)()` as a parameter - then
compiled them with mismatched compilers (either GCC+Clang, or
Clang+(Clang with this patch applied)) and no matter the combination,
despite the debug info for one CU naming the type "long int" and the
other naming it "long", both debuggers printed out the name as "long"
and were able to correctly perform overload resolution and pass the
`long int (*)()` variable to the `long (*)()` function parameter)
Did find one hiccup, identified by the lldb test suite - that CodeView
was relying on these names to map them to builtin types in that format.
So added some handling for that in LLVM. (these could be split out into
separate patches, but seems small enough to not warrant it - will do
that if there ends up needing any reverti/revisiting)
Differential Revision: https://reviews.llvm.org/D110455
This patch allows the use of __vector_quad and __vector_pair, PPC MMA builtin
types, on all PowerPC 64-bit compilation units. When these types are
made available the builtins that use them automatically become available
so semantic checking for mma and pair vector memop __builtins is also
expanded to ensure these builtin function call are only allowed on
Power10 and new architectures. All related test cases are updated to
ensure test coverage.
Reviewed By: #powerpc, nemanjai
Differential Revision: https://reviews.llvm.org/D109599
Modify the IfStmt node to suppoort constant evaluated expressions.
Add a new ExpressionEvaluationContext::ImmediateFunctionContext to
keep track of immediate function contexts.
This proved easier/better/probably more efficient than walking the AST
backward as it allows diagnosing nested if consteval statements.
I am looking at constant-folding changes that could affect these tests, so
check that it emits the expected global value instead of just checking
that it doesn't crash.
Looking at this test I did not see why MinGW was using a different command
line until I looked at the git history. Add a comment explaining what this
RUN line is actually testing. Also add two more RUN lines to show that
indirectly passed member pointers don't inhibit the optimization.
This excludes certain names that can't be rebuilt from the available
DWARF:
* Atomic types - no DWARF differentiating int from atomic int.
* Vector types - enough DWARF (an attribute on the array type) to do
this, but I haven't written the extra code to add the attributes
required for this
* Lambdas - ambiguous with any other unnamed class
* Unnamed classes/enums - would need column info for the type in
addition to file/line number
* noexcept function types - not encoded in DWARF
This matches GCC.
Change the CC1 option to encode the unwind table level (1: needed by exceptions,
2: asynchronous) so that we can support two modes in the future.
The matrix extension requires the indices for matrix subscript
expression to be valid and it is UB otherwise.
extract/insertelement produce poison if the index is invalid, which
limits the optimizer to not be bale to scalarize load/extract pairs for
example, which causes very suboptimal code to be generated when using
matrix subscript expressions with variable indices for large matrixes.
This patch updates IRGen to emit assumes to for index expression to
convey the information that the index must be valid.
This also adjusts the order in which operations are emitted slightly, so
indices & assumes are added before the load of the matrix value.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D102478
Using the preferred name creates a mismatch between the textual name of
a type and the DWARF tags describing the parameters as well as possible
inconsistency between DWARF producers (like Clang and GCC, or
older/newer Clang versions, etc).
See PR51862.
The consumers of the Elidable flag in CXXConstructExpr assume that
an elidable construction just goes through a single copy/move construction,
so that the source object is immediately passed as an argument and is the same
type as the parameter itself.
With the implementation of P2266 and after some adjustments to the
implementation of P1825, we started (correctly, as per standard)
allowing more cases where the copy initialization goes through
user defined conversions.
With this patch we stop using this flag in NRVO contexts, to preserve code
that relies on that assumption.
This causes no known functional changes, we just stop firing some asserts
in a cople of included test cases.
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D109800
This improves diagnostic (& important to me, DWARF) accuracy - otherwise
there could be ambiguities between "std::nullptr_t" and some user-defined
type that's /actually/ "nullptr_t" defined in the global namespace.
Differential Revision: https://reviews.llvm.org/D110044
Parallel regions are outlined as functions with capture variables explicitly generated as distinct parameters in the function's argument list. That complicates the fork_call interface in the OpenMP runtime: (1) the fork_call is variadic since there is a variable number of arguments to forward to the outlined function, (2) wrapping/unwrapping arguments happens in the OpenMP runtime, which is sub-optimal, has been a source of ABI bugs, and has a hardcoded limit (16) in the number of arguments, (3) forwarded arguments must cast to pointer types, which complicates debugging. This patch avoids those issues by aggregating captured arguments in a struct to pass to the fork_call.
Reviewed By: jdoerfert, jhuber6
Differential Revision: https://reviews.llvm.org/D102107
Seemingly, names in anonymous namespaces are ALWAYS given the unique
internal linkage name on windows, and I was not aware of this when I put
the names in my test! Replaced them with a wildcard.
We previously made all multiversioning resolvers/ifuncs have weak
ODR linkage in IR, since we NEED to emit the whole resolver every time
we see a call, but it is not necessarily the place where all the
definitions live.
HOWEVER, when doing so, we neglected the case where the versions have
internal linkage. This patch ensures we do this, so you don't get weird
behavior with static functions.
SelectionDAG will promote illegal types up to a power of 2 before
splitting down to a legal type. This will create an IntegerType
with a bit width that must be <= MAX_INT_BITS. This places an
effective upper limit on any type of 2^23 so that we don't try
create a 2^24 type.
I considered putting a fatal error somewhere in the path from
TargetLowering::getTypeConversion down to IntegerType::get, but
limiting the type in IR seemed better.
This breaks backwards compatibility with IR that is using a really
large type. I suspect such IR is going to be very rare due to the
the compile time costs such a type likely incurs.
Prevents the ICE in PR51829.
Reviewed By: efriedma, aaron.ballman
Differential Revision: https://reviews.llvm.org/D109721
eg: t1<void () const> - DWARF doesn't have a particularly nice way to
encode this, for real member function types (like `void (t1::*)()
const`) the const-ness is encoded in the type of the artificial first
parameter. But `void () const` has no parameters, so encode it like a
normal const-qualified type, using DW_TAG_const_type. (similarly for
restrict and volatile)
Reference qualifiers (& and &&) coming in a separate commit shortly.
Currently, we have no front-end type for ppc_fp128 type in IR. PowerPC
target generates ppc_fp128 type from long double now, but there's option
(-mabi=(ieee|ibm)longdouble) to control it and we're going to do
transition from IBM extended double-double ppc_fp128 to IEEE fp128 in
the future.
This patch adds type __ibm128 which always represents ppc_fp128 in IR,
as what GCC did for that type. Without this type in Clang, compilation
will fail if compiling against future version of libstdcxx (which uses
__ibm128 in headers).
Although all operations in backend for __ibm128 is done by software,
only PowerPC enables support for it.
There's something not implemented in this commit, which can be done in
future ones:
- Literal suffix for __ibm128 type. w/W is suitable as GCC documented.
- __attribute__((mode(IF))) should be for __ibm128.
- Complex __ibm128 type.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D93377
This reverts commit 2fbd254aa4, which broke the libc++ CI. I'm reverting
to get things stable again until we've figured out a way forward.
Differential Revision: https://reviews.llvm.org/D108696
Summary: Now in libcxx and clang, all the coroutine components are
defined in std::experimental namespace.
And now the coroutine TS is merged into C++20. So in the working draft
like N4892, we could find the coroutine components is defined in std
namespace instead of std::experimental namespace.
And the coroutine support in clang seems to be relatively stable. So I
think it may be suitable to move the coroutine component into the
experiment namespace now.
But move the coroutine component into the std namespace may be an break
change. So I planned to split this change into two patch. One in clang
and other in libcxx.
This patch would make clang lookup coroutine_traits in std namespace
first. For the compatibility consideration, clang would lookup in
std::experimental namespace if it can't find definitions in std
namespace and emit a warning in this case. So the existing codes
wouldn't be break after update compiler.
Test Plan: check-clang, check-libcxx
Reviewed By: lxfind
Differential Revision: https://reviews.llvm.org/D108696
It looks like this array was missed in 4276d4a8d0
Fixed tests that expected `elements` to be empty or depeneded on the order of the empty DINode.
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D107024
Empty packs in the non-final position would result in an extra ", ".
Empty packs in the final position would result in missing the space
between trailing >>.
Previously when emitting a C++ guarded initializer, we tried to work out what
the enclosing function would be used for and added it to the COMDAT containing
the variable if we thought that doing so would be correct. But this was done
from a context in which we didn't -- and realistically couldn't -- correctly
infer how the enclosing function would be used.
Instead, add the initialization function to a COMDAT from the code that
creates it, in the case where it makes sense to do so: when we know that
the one and only reference to the initialization function is in
@llvm.global.ctors and that reference is in the same COMDAT.
Reviewed By: rjmccall
Differential Revision: https://reviews.llvm.org/D108680
This CL is small, but the description can be a little long because I'm
trying to sum up the status quo for Emscripten/Wasm EH/SjLj options.
First, this CL adds an option for Wasm SjLj (`-wasm-enable-sjlj`), which
handles SjLj using Wasm EH. The implementation for this will be added as
a followup CL, but this adds the option first to do error checking.
This also adds an option for Wasm EH (`-wasm-enable-eh`), which has been
already implemented. Before we used `-exception-model=wasm` as the same
meaning as enabling Wasm EH, but after we add Wasm SjLj, it will be
possible to use Wasm EH instructions for Wasm SjLj while not enabling
EH, so going forward, to use Wasm EH, `opt` and `llc` will need this
option. This only affects `opt` and `llc` command lines and does not
affect Emscripten user interface.
Now we have two modes of EH (Emscripten/Wasm) and also two modes of SjLj
(also Emscripten/Wasm). The options corresponding to each of are:
- Emscripten EH: `-enable-emscripten-cxx-exceptions`
- Emscripten SjLj: `-enable-emscripten-sjlj`
- Wasm EH: `-wasm-enable-eh -exception-model=wasm`
`-mattr=+exception-handling`
- Wasm SjLj: `-wasm-enable-sjlj -exception-model=wasm`
`-mattr=+exception-handling`
The reason Wasm EH/SjLj's options are a little complicated are
`-exception-model` and `-mattr` are common LLVM options ane not under
our control. (`-mattr` can be omitted if it is embedded within the
bitcode file.)
And we have the following rules of the option composition:
- Emscripten EH and Wasm EH cannot be turned on at the same itme
- Emscripten SjLj and Wasm SjLj cannot be turned on at the same time
- Wasm SjLj should be used with Wasm EH
Which means we now allow these combinations:
- Emscripten EH + Emscripten SjLj: the current default in `emcc`
- Wasm EH + Emscripten SjLj:
This is allowed, but only as an interim step in which we are testing
Wasm EH but not yet have a working implementation of Wasm SjLj. This
will error out (D107687) in compile time if `setjmp` is called in a
function in which Wasm exception is used.
- Wasm EH + Wasm SjLj:
This will be the default mode later when using Wasm EH. Currently Wasm
SjLj implementation doesn't exist, so it doesn't work.
- Emscripten EH + Wasm SjLj will not work.
This CL moves these error checking routines to
`WebAssemblyPassConfig::addIRPasses`. Not sure if this is an ideal place
to do this, but I couldn't find elsewhere. Currently some checking is
done within LowerEmscriptenEHSjLj, but these checks only run if
LowerEmscriptenEHSjLj runs so it may not run when Wasm EH is used. This
moves that to `addIRPasses` and adds some more checks.
Currently LowerEmscriptenEHSjLj pass is responsible for Emscripten EH
and Emscripten SjLj. Wasm EH transformations are done in multiple
places, including WasmEHPrepare, LateEHPrepare, and CFGStackify. But in
the followup CL, LowerEmscriptenEHSjLj pass will be also responsible for
a part of Wasm SjLj transformation, because WasmSjLj will also be using
several Emscripten library functions, and we will be sharing more than
half of the transformation to do that between Emscripten SjLj and Wasm
SjLj.
Currently we have `-enable-emscripten-cxx-exceptions` and
`-enable-emscripten-sjlj` but these only work for `llc`, because for
`llc` we feed these options to the pass but when we run the pass using
`opt` the pass will be created with no options and the default options
will be used, which turns both Emscripten EH and Emscripten SjLj on.
Now we have one more SjLj option to care for, LowerEmscriptenEHSjLj pass
needs a finer way to control these options. This CL removes those
default parameters and make LowerEmscriptenEHSjLj pass read directly
from command line options specified. So if we only run
`opt -wasm-lower-em-ehsjlj`, currently both Emscripten EH and Emscripten
SjLj will run, but with this CL, none will run unless we additionally
pass `-enable-emscripten-cxx-exceptions` or `-enable-emscripten-sjlj`,
or both. This does not affect users; this only affects our `opt` tests
because `emcc` will not call either `opt` or `llc`. As a result of this,
our existing Emscripten EH/SjLj tests gained one or both of those
options in their `RUN` lines.
Reviewed By: dschuff
Differential Revision: https://reviews.llvm.org/D107685
This reverts the revert 28c04794df.
The failing MLIR test that caused the revert should be fixed in this
version.
Also includes a PPC test fix previously in 1f87c7c478.
Previoulsy debug-info-for-profiling and pseudo-probe-for-profiling are mutual exclusive because they compete the dwarf discrimnator for callsites on the IR. This changes allows to use the two switches together. The side effect is that callsite discriminators will be taken by pseudo probe, while discriminators for other instructions are still available for AutoFDO use. This is less than ideal, however, it still allows us a chance to smoothly transition from AutoFDO to CSSPGO, by collecting both profiles from a CSSPGO binary.
Reviewed By: wenlei, wmi
Differential Revision: https://reviews.llvm.org/D107876
This patch adjusts the intrinsics definition of
llvm.matrix.column.major.load and llvm.matrix.column.major.store to
allow overloading the type of the stride. The bitwidth of the stride is
used to perform the offset computation.
This fixes a crash when using __builtin_matrix_column_major_load or
__builtin_matrix_column_major_store on 32 bit platforms. The stride argument
of the builtins are defined as `size_t`, which is 32 bits wide on 32 bit
platforms.
Note that we still perform offset computations with 64 bit width on 32
bit platforms for accesses that do not take a user-specified stride.
This can be fixed separately.
Fixes PR51304.
Reviewed By: erichkeane
Differential Revision: https://reviews.llvm.org/D107349
This matches the behavior of GCC.
Patch does not change remapping logic itself, so adding one simple smoke test should be enough.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D107393
The declaration for the global new function in C++ is generated in the compiler front-end. When examining exception propagation, we found that this is the largest root throw site propagator requiring unwind code to be generated for callers up the stack. Allowing this to be handled immediately with termination stops upward propagation and leads to significantly less landing pads generated. This in turns leads to a performance and .text size win.
With `-fnew-infallible` this annotates the declaration with `throw()` and `__attribute__((returns_nonnull))`. `throw()` allows the compiler to assume exceptions do not propagate out of new and eliminate it as a root throw site. Note that the definition of global new is user-replaceable so users should ensure that the one used follows these semantics.
Measuring internally, we're seeing at 0.5% CPU win in one of our large internal FB workload. Measuring on clang self-build (cd0a1226b5) we get:
thinlto/
"dwarfehprepare.NumCleanupLandingPadsRemaining": 153494,
"dwarfehprepare.NumNoUnwind": 26309,
thinlto_newinfallible/
"dwarfehprepare.NumCleanupLandingPadsRemaining": 143660,
"dwarfehprepare.NumNoUnwind": 28744,
a 1-143660/153494 = 6.4% reduction in landing pads and a 28744/26309 = 9.3% increase in the number of nounwind functions.
Testing:
ninja check-all
new test case to make sure these attributes are added correctly to global new.
Reviewed By: urnathan
Differential Revision: https://reviews.llvm.org/D105225
Target-dependent constant folding will fold these down to simple
constants (or at least, expressions that don't involve a GEP). We don't
need heroics to try to optimize the form of the expression before that
happens.
Fixes https://bugs.llvm.org/show_bug.cgi?id=51232 .
Differential Revision: https://reviews.llvm.org/D107116
On ELF, an SHT_INIT_ARRAY outside a section group is a GC root. The current
codegen abuses SHT_INIT_ARRAY in a section group to mean a GC root.
On PE/COFF, the dynamic initialization for `__declspec(selectany)` in a comdat
can be garbage collected by `-opt:ref`.
Call `addUsedGlobal` for the two cases to fix the abuse/bug.
Reviewed By: rnk
Differential Revision: https://reviews.llvm.org/D106925
Constructor homing reduces the amount of class type info that is emitted
by emitting conmplete type info for a class only when a constructor for
that class is emitted.
This will mainly reduce the amount of duplicate debug info in object
files. In Chrome enabling ctor homing decreased total build directory sizes
by about 30%.
It's also expected that some class types (such as unused classes)
will no longer be emitted in the debug info. This is fine, since we wouldn't
expect to need these types when debugging.
In some cases (e.g. libc++, https://reviews.llvm.org/D98750), classes
are used without calling the constructor. Since this is technically
undefined behavior, enabling constructor homing should be fine.
However Clang now has an attribute
`__attribute__((standalone_debug))` that can be used on classes to
ignore ctor homing.
Bug: https://bugs.llvm.org/show_bug.cgi?id=46537
Differential Revision: https://reviews.llvm.org/D106084
DIEnumerator stores an APInt as of April 2020, so now we don't need to
truncate the enumerator value to 64 bits. Fixes assertions during IRGen.
Split from D105320, thanks to Matheus Izvekov for the test case and
report.
Differential Revision: https://reviews.llvm.org/D106585
Summary:
The AIX linker will produce errors on unresolved weak symbols. Change the
generated code to not check for the initialization function but just call
it and ensure that it always exists. Also, the AIX atexit routine has a
different name (and signature) so call it correctly. Update the lit tests
to test on AIX appropriately.
Author: Jamie Schmeiser <schmeise@ca.ibm.com>
Reviewed By: hubert.reinterpretcast (Hubert Tong)
Differential Revision: https://reviews.llvm.org/D104420
It's noteworthy that GCC has the same bug here, which is a bit
surprising. Both Clang and GCC's bug is only for function template
arguments that are themselves templates with default template arguments
(f1<t1<int[, missing_default_here]>>). Probably because function name
matching isn't generally necessary - whereas type matching is necessary
for DWARF consumers to associate declarations and definitions across
translation units, so the bug's been addressed there already - but
continued to exist for function templates since it's fairly benign
there.
I came across this while working on a change that could reconstitute
these pretty printed names based on the rest of the DWARF, reducing the
size of the DWARF by not having to encode all the template parameters in
the name string. That reconstitution code can't tell the difference
between a defaulted argument or not, so couldn't create the current
buggy-ish output.
Making the names more consistent between direct and indirect references,
and between function and class templates seems all to the good.
(I fixed the function template version of this a few years back in
9fdd09a4cc - clearly I should've looked
more closely and generalized the code better so it only had to be fixed
once - well, doing that here now)
Parallel regions are outlined as functions with capture variables explicitly generated as distinct parameters in the function's argument list. That complicates the fork_call interface in the OpenMP runtime: (1) the fork_call is variadic since there is a variable number of arguments to forward to the outlined function, (2) wrapping/unwrapping arguments happens in the OpenMP runtime, which is sub-optimal, has been a source of ABI bugs, and has a hardcoded limit (16) in the number of arguments, (3) forwarded arguments must cast to pointer types, which complicates debugging. This patch avoids those issues by aggregating captured arguments in a struct to pass to the fork_call.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D102107
If the instantiation of a member variable makes it possible to
compute a previously undeduced type, we should use that piece of
information.
Fix bug#50590
Differential Revision: https://reviews.llvm.org/D103849
Reapply with fixes for clang tests.
-----
This is a simple enum attribute. Test changes are because enum
attributes are sorted before type attributes, so mustprogress is
now in a different position.
When building the member call to a user conversion function during an
implicit cast, the expression was not being checked for immediate
invocation, so we were never adding the ConstantExpr node to AST.
This would cause the call to the user conversion operator to be emitted
even if it was constantexpr evaluated, and this would even trip an
assert when said user conversion was declared consteval:
`Assertion failed: !cast<FunctionDecl>(GD.getDecl())->isConsteval() && "consteval function should never be emitted", file clang\lib\CodeGen\CodeGenModule.cpp, line 3530`
Fixes PR48855.
Signed-off-by: Matheus Izvekov <mizvekov@gmail.com>
Reviewed By: rsmith
Differential Revision: https://reviews.llvm.org/D105446
copy/dispose helper functions
We found out that these fake functions would cause clang to crash if the
changes proposed in https://reviews.llvm.org/D98799 were made.
The original patch was reverted in f681fd927e
because debug locations were missing in the body of the block byref
helper functions. This patch fixes the bug by calling CreateArtificial
after the calls to StartFunction.
Differential Revision: https://reviews.llvm.org/D104082
Non-throwing allocators currently will always get null-check code. However, if the non-throwing allocator is explicitly annotated with returns_nonnull the null check should be elided.
Testing:
ninja check-all
added test case correctly elides
Reviewed By: bruno
Differential Revision: https://reviews.llvm.org/D102820
On x86_64 mingw, long doubles are always passed indirectly as
arguments (see an existing case in WinX86_64ABIInfo::classify);
generalize the existing code for reading varargs - any non-aggregate
type that is larger than 64 bits (which would be both long double
in mingw, and __int128) are passed indirectly too.
This makes reading varargs consistent with how they're passed,
fixing interop with both gcc and clang callers, for long double
and __int128.
Differential Revision: https://reviews.llvm.org/D103452
This fixes PR49198: Wrong usage of __dso_handle in user code leads to
a compiler crash.
When Init is an address of the global itself, we need to track it
across RAUW. Otherwise the initializer can be destroyed if the global
is replaced.
Differential Revision: https://reviews.llvm.org/D101156
All fuchsia targets will now use the relative-vtables ABI by default.
Also remove -fexperimental-relative-c++-abi-vtables from test RUNs targeting fuchsia.
Differential Revision: https://reviews.llvm.org/D102374
At the moment, the matrix support in CheckCXXCStyleCast (added in
D101696) breaks function-style constructor calls that take a
single matrix value, because it is treated as matrix cast.
Instead, unify the C++ matrix cast handling by moving the logic to
TryStaticCast and only handle the case where both types are matrix
types. Otherwise, fall back to the generic mis-match detection.
Suggested by @rjmccall
Reviewed By: SaurabhJha
Differential Revision: https://reviews.llvm.org/D103163
This relands commit 13dd65b3a1.
The original commit contained a test, which failed when compiled
for a MACH-O target.
This patch changes the test to run for x86_64-linux instead of
`%itanium_abi_triple`, to avoid having invalid syntax for MACH-O
sections. The patch itself does not care about section attribute
syntax and a x86 backend does not even need to be included in the
build.
Differential Revision: https://reviews.llvm.org/D102693
When a const-qualified object has a section attribute, that
section is set to read-only and clang outputs a LLVM IR constant
for that object. This is incorrect for dynamically initialised
objects.
For example:
int init() { return 15; }
__attribute__((section("SA")))
const int a = init();
a is allocated to a read-only section and is left
unintialised (zero-initialised).
This patch adds checks if an initialiser is a constant expression
and allocates objects to sections as follows:
* const-qualified objects
- no initialiser or constant initialiser: .rodata
- dynamic initializer: .bss
* non const-qualified objects
- no initialiser or dynamic initialiser: .bss
- constant initialiser: .data
(".rodata", ".data", and ".bss" names used just for explanatory
purpose)
Differential Revision: https://reviews.llvm.org/D102693
When -gstrict-dwarf is specified, generate DW_TAG_rvalue_reference_type
at DWARF 4 or above
Reviewed By: dblaikie, aprantl
Differential Revision: https://reviews.llvm.org/D100630
.byte supports string, so if the whole byte list are printable,
we can actually print the string for readability and LIT tests maintainence.
.byte 'H,'e,'l,'l,'o,',,' ,'w,'o,'r,'l,'d
->
.byte "Hello, world"
Reviewed By: hubert.reinterpretcast
Differential Revision: https://reviews.llvm.org/D102814
It turns out we have not correctly supported exception spec all along in
Emscripten EH. Emscripten EH supports `throw()` but not `throw` with
types. See https://bugs.llvm.org/show_bug.cgi?id=50396.
Wasm EH also only supports `throw()` but not `throw` with types, and we
have been printing a warning message for the latter. This prints the
same warning message for `throw` with types when Emscripten EH is used,
or more precisely, when Wasm EH is not used. (So this will print the
warning messsage even when `-fno-exceptions` is used but I think that
should be fine. It's cumbersome to do a complilcated option checking in
CGException.cpp and options checkings are mostly done in elsewhere.)
Reviewed By: dschuff, kripken
Differential Revision: https://reviews.llvm.org/D102791
We use `CHECK-LABEL: define` to divide input stream into functions,
this works well on most platforms.
But there are cases that some platforms (eg: AIX) may have different
codegen , especially for global constructor and descructors.
On AIX, the codegen will have two more functions: __dtor_b,
__finalize_b, which will fail the test.
The fix is to use specific function name so that we can safely ignore
those unrelated codegen differences.
Reviewed By: dblaikie
Differential Revision: https://reviews.llvm.org/D102654
I wouldn't recommend writing code like the testcase; a function
parameter isn't atomic, so using an atomic type doesn't really make
sense. But it's valid, so clang shouldn't crash on it.
The code was assuming hasAggregateEvaluationKind(Ty) implies Ty is a
RecordType, which isn't true. Just use isRecordType() instead.
Differential Revision: https://reviews.llvm.org/D102015
I've taken the following steps to add unwinding support from inline assembly:
1) Add a new `unwind` "attribute" (like `sideeffect`) to the asm syntax:
```
invoke void asm sideeffect unwind "call thrower", "~{dirflag},~{fpsr},~{flags}"()
to label %exit unwind label %uexit
```
2.) Add Bitcode writing/reading support + LLVM-IR parsing.
3.) Emit EHLabels around inline assembly lowering (SelectionDAGBuilder + GlobalISel) when `InlineAsm::canThrow` is enabled.
4.) Tweak InstCombineCalls/InlineFunction pass to not mark inline assembly "calls" as nounwind.
5.) Add clang support by introducing a new clobber: "unwind", which lower to the `canThrow` being enabled.
6.) Don't allow unwinding callbr.
Reviewed By: Amanieu
Differential Revision: https://reviews.llvm.org/D95745
The original change was reverted because it was discovered
that clang mishandles thunks, and they receive wrong
attributes for their this/return types - the ones for the function
they will call, not the ones they have.
While i have tried to fix this in https://reviews.llvm.org/D100388
that patch has been up and stuck for a month now,
with little signs of progress.
So while it will be good to solve this for real,
for now we can simply avoid introducing the bug,
by not annotating this/return for thunks.
This reverts commit 6270b3a1ea,
relanding 0aa0458f14.
As it was discovered in post-commit feedback
for 0aa0458f14,
we handle thunks incorrectly, and end up annotating
their this/return with attributes that are valid
for their callees, not for thunks themselves.
While it would be good to fix this properly,
and keep annotating them on thunks,
i've tried doing that in https://reviews.llvm.org/D100388
with little success, and the patch is stuck for a month now.
So for now, as a stopgap measure, subj.
Non-comprehensive list of cases:
* Dumping template arguments;
* Corresponding parameter contains a deduced type;
* Template arguments are for a DeclRefExpr that hadMultipleCandidates()
Type information is added in the form of prefixes (u8, u, U, L),
suffixes (U, L, UL, LL, ULL) or explicit casts to printed integral template
argument, if MSVC codeview mode is disabled.
Differential revision: https://reviews.llvm.org/D77598
Commit 5baea05601 set the CurCodeDecl
because it was needed to pass the assert in CodeGenFunction::EmitLValueForLambdaField,
But this was not right to do as CodeGenFunction::FinishFunction passes it to EmitEndEHSpec
and cause corruption of the EHStack.
Revert the part of the commit that changes the CurCodeDecl, and instead
adjust the assert to check for a null CurCodeDecl.
Differential Revision: https://reviews.llvm.org/D102027