For AArch64 backend, if DAGCombiner see "sext(setcc)", it will
combine them together to a single setcc with extended value type.
Then if it see "zext(setcc)", it assumes setcc is Vxi1, and try to
create "(and (vsetcc), (1, 1, ...)". While setcc isn't Vxi1,
DAGcombiner will create wrong node and get wrong code emitted.
llvm-svn: 198190
Schedule more conservatively to account for stalls on floating point
resources and latency. Use the AGU resource to model latency stalls
since it's shared between FP and LD/ST instructions. This might not be
completely accurate but should work well in practice.
llvm-svn: 198125
vector shift by immedate count (VSHLI/VSRLI/VSRAI) into a build_vector when
the vector in input to the shift is a build_vector of all constants or UNDEFs.
Target specific nodes for packed shifts by immediate count are in
general introduced by function 'getTargetVShiftByConstNode' (in
X86ISelLowering.cpp) when lowering shift operations, SSE/AVX immediate
shift intrinsics and (only in very few cases) SIGN_EXTEND_INREG dag
nodes.
This patch adds extra rules for simplifying vector shifts inside
function 'getTargetVShiftByConstNode'.
Added file test/CodeGen/X86/vec_shift5.ll to verify that packed
shifts by immediate are correctly folded into a build_vector when the
input vector to the shift dag node is a vector of constants or undefs.
llvm-svn: 198113
ConstantSDNodes (or UNDEFs) into a simple BUILD_VECTOR.
For example, given the following sequence of dag nodes:
i32 C = Constant<1>
v4i32 V = BUILD_VECTOR C, C, C, C
v4i32 Result = SIGN_EXTEND_INREG V, ValueType:v4i1
The SIGN_EXTEND_INREG node can be folded into a build_vector since
the vector in input is a BUILD_VECTOR of constants.
The optimized sequence is:
i32 C = Constant<-1>
v4i32 Result = BUILD_VECTOR C, C, C, C
llvm-svn: 198084
...namely LOAD AND ADD, LOAD AND AND, LOAD AND OR and LOAD AND EXCLUSIVE OR.
LOAD AND ADD LOGICAL isn't really separately useful for LLVM.
I'll look at adding reusing the CC results in new year.
llvm-svn: 197985
DAG.getVectorShuffle() doesn't always return a vector_shuffle node.
If mask is the exact sequence of it's operand(For example, operand_0
is v8i8, and the mask is 0, 1, 2, 3, 4, 5, 6, 7), it will directly
return that operand. So a check is added here.
llvm-svn: 197967
This failure caused by improper condition when lowering shuffle_vector
to scalar_to_vector. After this patch NEON_VDUP with v1i64 will not
be generated.
llvm-svn: 197966
Check for single use of fmul node in fused multiply patterns
to allow generation of fused multiply add/sub instructions.
Otherwise fmul operation ends up being repeated more than
once which does not help peformance on targets with
only one MAC unit, as for example cortex-a53.
llvm-svn: 197929
The correct pattern matching should be:
- fnmadd is (-Ra) + (-Rn)*Rm which should be matched as:
fma (fneg node:$Rn), node:$Rm, (fneg node:$Ra) and as
(f32 (fsub (f32 (fneg FPR32:$Ra)), (f32 (fmul FPR32:$Rn, FPR32:$Rm))))
- fnmsub is (-Ra) + Rn*Rm which should be matched as
fma node:$Rn, node:$Rm, (fneg node:$Ra) and as
(f32 (fsub (f32 (fmul FPR32:$Rn, FPR32:$Rm)), FPR32:$Ra))))
llvm-svn: 197928
If the extension of a loaded value is compared against zero and used in
other arithmetic, InstCombine will change the comparison to use the
unextended load. It's also possible that the comparison could be against
the unextended load from the outset.
In DAG form this becomes a truncation of an extending load. We want to
strip the truncation if possible so that we can use load-and-test instructions.
llvm-svn: 197804
The handling of ANY_EXTEND and ZERO_EXTEND was too strict. In this context
we can treat ZERO_EXTEND in much the same way as an AND and then also handle
outermost ZERO_EXTENDs.
I couldn't find a test that benefited from the ANY_EXTEND change, but it's
more obvious to write it this way once SIGN_EXTEND and ZERO_EXTEND are
handled differently.
llvm-svn: 197802
v2: Add ftrunc->TRUNC pattern instead of replacing int_AMDGPU_trunc
v3: move ftrunc pattern next to TRUNC definition, it's available since R600
Patch By: Jan Vesely
Reviewed-by: Tom Stellard <thomas.stellard@amd.com>
Signed-off-by: Jan Vesely <jan.vesely@rutgers.edu>
llvm-svn: 197783
The condition in selects is supposed to be i1.
Make sure we are just reading the less significant bit
of the 8 bits width value to match this constraint.
<rdar://problem/15651765>
llvm-svn: 197712
Different sized address spaces should theoretically work
most of the time now, and since 64-bit add is currently
disabled, using more 32-bit pointers fixes some cases.
llvm-svn: 197659
This changes the MachineFrameInfo API to use the new SSPLayoutKind information
produced by the StackProtector pass (instead of a boolean flag) and updates a
few pass dependencies (to preserve the SSP analysis).
The stack layout follows the same approach used prior to this change - i.e.,
only LargeArray stack objects will be placed near the canary and everything
else will be laid out normally. After this change, structures containing large
arrays will also be placed near the canary - a case previously missed by the
old implementation.
Out of tree targets will need to update their usage of
MachineFrameInfo::CreateStackObject to remove the MayNeedSP argument.
The next patch will implement the rules for sspstrong and sspreq. The end goal
is to support ssp-strong stack layout rules.
WIP.
Differential Revision: http://llvm-reviews.chandlerc.com/D2158
llvm-svn: 197653
The inalloca attribute is designed to support passing C++ objects by
value in the Microsoft C++ ABI. It behaves the same as byval, except
that it always implies that the argument is in memory and that the bytes
are never copied. This attribute allows the caller to take the address
of an outgoing argument's memory and execute arbitrary code to store
into it.
This patch adds basic IR support, docs, and verification. It does not
attempt to implement any lowering or fix any possibly broken transforms.
When this patch lands, a complete description of this feature should
appear at http://llvm.org/docs/InAlloca.html .
Differential Revision: http://llvm-reviews.chandlerc.com/D2173
llvm-svn: 197645
tail call optimization. Some more work may be needed for indirect
calls but this patch fixes the current regression in Prolangc++/trees.
S2 optimization as part of the general cleanup and optimization
of prolog and epilog was not saving S2 in this case and needed to.
llvm-svn: 197630
This reverts commit r197466.
The MachineCSE fix that required the -mcpu flag has been disabled
until more work can be done to fix downstream issues. Adding -mcpu
wasn't the right workaround anyway.
llvm-svn: 197624
Given vsel_cc, op1, op2, since vsel has no LE/LT, to generate vsel for
such selection, it needs to inverse cc and swap op1 and op2. To inverse
cc, both L/G and E bits should be flipped.
llvm-svn: 197615
Clang sets the float-abi target option manually, but no longer
annotates each function with its ABI. This can lead to confusing
mistmatch between "clang -emit-llvm | llc" and normal clang
invocations.
Besides which, gnueabihf actually *is* hard-float. Defaulting to soft
was just perverse.
llvm-svn: 197554
This effectively backs out r197465 but leaves some of the general
fixes in place. Not all targets are ready to handle this feature. To
enable it, some infrastructure work is needed to better handle
register class constraints.
llvm-svn: 197514
This reapplies r197438 and fixes the link-time circular dependency between
IR and Support. The fix consists in moving the diagnostic support into IR.
The patch adds a new LLVMContext::diagnose that can be used to communicate to
the front-end, if any, that something of interest happened.
The diagnostics are supported by a new abstraction, the DiagnosticInfo class.
The base class contains the following information:
- The kind of the report: What this is about.
- The severity of the report: How bad this is.
This patch also adds 2 classes:
- DiagnosticInfoInlineAsm: For inline asm reporting. Basically, this diagnostic
will be used to switch to the new diagnostic API for LLVMContext::emitError.
- DiagnosticStackSize: For stack size reporting. Comes as a replacement of the
hard coded warning in PEI.
This patch also features dynamic diagnostic identifiers. In other words plugins
can use this infrastructure for their own diagnostics (for more details, see
getNextAvailablePluginDiagnosticKind).
This patch introduces a new DiagnosticHandlerTy and a new DiagnosticContext in
the LLVMContext that should be set by the front-end to be able to map these
diagnostics in its own system.
http://llvm-reviews.chandlerc.com/D2376
<rdar://problem/15515174>
llvm-svn: 197508
This reverts commit r197481, recommiting r197469 with an extra fix.
The vastart_save_xmm_regs pseudo-instruction expands to a test and a
branch, so it modifies EFLAGS. Mark it so, or else the scheduler might
place it in the middle of another test+branch.
This fixes a bug exposed by r192750, which changed the initial scheduler
to source-order as part of enabling the MI Scheduler for X86.
This re-commit changes the VASTART_SAVE_XMM_REGS custom inserter not to
try to save %flags, and adds a test that catches the bad behavior of
r197469.
<rdar://problem/15627766>
llvm-svn: 197503
http://llvm.org/bugs/show_bug.cgi?id=18045
Short issue description:
For X86 machines with sse < sse4.1 we got failures for some
particular load/store vector sequences:
$ clang-trunk -m32 -O2 test-case.c
fatal error: error in backend: Cannot select: 0x4200920: v4i32,ch = load 0x41d6ab0, 0x4205850,
0x41dcb10<LD16[getelementptr inbounds ([4 x i32]* @e, i32 0, i32 0)](align=4)> [ORD=82]
[ID=58]
0x4205850: i32 = X86ISD::Wrapper 0x41d5490 [ORD=26] [ID=43]
0x41d5490: i32 = TargetGlobalAddress<[4 x i32]* @e> 0 [ORD=26] [ID=23]
0x41dcb10: i32 = undef [ID=2]
The reason is that EltsFromConsecutiveLoads could emit such load instruction
both before and after legalize stage. Though this instruction is not legal for
machines with SSSE3 and lower.
The fix: In EltsFromConsecutiveLoads, if we have passed legalize stage, we
check whether nodes it emits are legal.
P.S.: If you get failure in time from 12:00 and till 22:00 (UTC-8),
perhaps I'll slow with response, so you better reject this commit. Thanks!
llvm-svn: 197492
This reverts commit r197469.
The sanitizer and dragonegg buildbots are failing, I think because of
this change. Reverting until I figure out why.
llvm-svn: 197481
The vastart_save_xmm_regs pseudo-instruction expands to a test and a
branch, so it modifies EFLAGS. Mark it so, or else the scheduler might
place it in the middle of another test+branch.
This fixes a bug exposed by r192750, which turned on the MI Scheduler
for X86.
<rdar://problem/15627766>
llvm-svn: 197469
Without this, MachineCSE is powerless to handle redundant operations with truncated source operands.
This required fixing the 2-addr pass to handle tied subregisters. It isn't clear what combinations of subregisters can legally be tied, but the simple case of truncated source operands is now safely handled:
%vreg11<def> = COPY %vreg1:sub_32bit; GR32:%vreg11 GR64:%vreg1
%vreg12<def> = COPY %vreg2:sub_32bit; GR32:%vreg12 GR64:%vreg2
%vreg13<def,tied1> = ADD32rr %vreg11<tied0>, %vreg12<kill>, %EFLAGS<imp-def>
Test case: cse-add-with-overflow.ll.
This exposed an existing bug in
PPCInstrInfo::commuteInstruction. Thanks to Rafael for the test case:
PowerPC/crash.ll.
llvm-svn: 197465
The patch adds a new LLVMContext::diagnose that can be used to communicate to
the front-end, if any, that something of interest happened.
The diagnostics are supported by a new abstraction, the DiagnosticInfo class.
The base class contains the following information:
- The kind of the report: What this is about.
- The severity of the report: How bad this is.
This patch also adds 2 classes:
- DiagnosticInfoInlineAsm: For inline asm reporting. Basically, this diagnostic
will be used to switch to the new diagnostic API for LLVMContext::emitError.
- DiagnosticStackSize: For stack size reporting. Comes as a replacement of the
hard coded warning in PEI.
This patch also features dynamic diagnostic identifiers. In other words plugins
can use this infrastructure for their own diagnostics (for more details, see
getNextAvailablePluginDiagnosticKind).
This patch introduces a new DiagnosticHandlerTy and a new DiagnosticContext in
the LLVMContext that should be set by the front-end to be able to map these
diagnostics in its own system.
http://llvm-reviews.chandlerc.com/D2376
<rdar://problem/15515174>
llvm-svn: 197438
that it coalesces normal copies.
Without this, MachineCSE is powerless to handle redundant operations
with truncated source operands.
This required fixing the 2-addr pass to handle tied subregisters. It
isn't clear what combinations of subregisters can legally be tied, but
the simple case of truncated source operands is now safely handled:
%vreg11<def> = COPY %vreg1:sub_32bit; GR32:%vreg11 GR64:%vreg1
%vreg12<def> = COPY %vreg2:sub_32bit; GR32:%vreg12 GR64:%vreg2
%vreg13<def,tied1> = ADD32rr %vreg11<tied0>, %vreg12<kill>, %EFLAGS<imp-def>
llvm-svn: 197414
Added scalar compare VCMPSS, VCMPSD.
Implemented LowerSELECT for scalar FP operations.
I replaced FSETCCss, FSETCCsd with one node type FSETCCs.
Node extract_vector_elt(v16i1/v8i1, idx) returns an element of type i1.
llvm-svn: 197384
Currently we have such types as legal vector types. The DAG combiner may generate some DAG nodes having such types but we don't have patterns to match them.
E.g. a load i32 and a bitcast i32 to v1i32 will be combined into a load v1i32:
bitcast (load i32) to v1i32 -> load v1i32.
So this patch fixes such problems for load/dup instructions.
If v1i8/v1i16/v1i32 are not legal any more, the code in this patch can be deleted. So I also add some FIXME.
llvm-svn: 197361
Some tiny cosmetic code changes to follow. Because of the wide
ranging nature of the patch a full 24 test cycle was needed to
check against regression. This was the smallest patch I could
make to progress from the earlier ones in the series.
llvm-svn: 197350
This is a base implementation of the powerpc-apple-darwin asm parser dialect.
* Enables infrastructure (essentially isDarwin()) and fixes up the parsing of asm directives to separate out ELF and MachO/Darwin additions.
* Enables parsing of {r,f,v}XX as register identifiers.
* Enables parsing of lo16() hi16() and ha16() as modifiers.
The changes to the test case are from David Fang (fangism).
llvm-svn: 197324
This optional register liveness analysis pass can be enabled with either
-enable-stackmap-liveness, -enable-patchpoint-liveness, or both. The pass
traverses each basic block in a machine function. For each basic block the
instructions are processed in reversed order and if a patchpoint or stackmap
instruction is encountered the current live-out register set is encoded as a
register mask and attached to the instruction.
Later on during stackmap generation the live-out register mask is processed and
also emitted as part of the stackmap.
This information is optional and intended for optimization purposes only. This
will enable a client of the stackmap to reason about the registers it can use
and which registers need to be preserved.
Reviewed by Andy
llvm-svn: 197317
This reverts commit r197254.
This was an accidental merge of Juergen's patch. It will be checked in
shortly, but wasn't meant to go in quite yet.
Conflicts:
include/llvm/CodeGen/StackMaps.h
lib/CodeGen/StackMaps.cpp
test/CodeGen/X86/stackmap-liveness.ll
llvm-svn: 197260
The cpp backend is not a reasonable fallback for a missing target. It is a
very special backend, so it is reasonable to use it only if explicitly
requested.
While at it, simplify the interface a bit.
llvm-svn: 197241
This originally came about after noticing that InstCombine turns
some of the TMHH (icmp (and...), ...) tests into plain comparisons.
Since there is no instruction to compare with a 64-bit immediate,
TMHH is generally better than an ordered comparison for the cases
that it can handle.
llvm-svn: 197238
This patch makes more use of LPGFR and LNGFR. It builds on top of
the LTGFR selection from r197234. Most of the tests are motivated
by what InstCombine would produce.
llvm-svn: 197236
InstCombine turns (sext (trunc)) into (ashr (shl)), then converts any
comparison of the ashr against zero into a comparison of the shl against zero.
This makes sense in itself, but we want to undo it for z, since the sign-
extension instruction has a CC-setting form.
I've included tests for both the original and InstCombined variants,
but the former already worked. The patch fixes the latter.
llvm-svn: 197234
While it's safe for the X86-specific shift nodes, dag combining will
kill generic nodes. Insert an AND to make it safe, isel will nuke it
as x86's shift instructions have an implicit AND.
Fixes PR16108, which contains a contraption to hit this case in between
constant folders.
llvm-svn: 197228
Since gcc 4.6 the compiler uses ___chkstk_ms which has the same semantics as the
MS CRT function __chkstk. This simplifies the prologue generation a bit.
Reviewed by Rafael Espíndola.
llvm-svn: 197205
- Copy patterns with float/double types are enough.
- Fix typos in test case names that were using v1fx.
- There is no ACLE intrinsic that uses v1f32 type. And there is no conflict of
neon and non-neon ovelapped operations with this type, so there is no need to
support operations with this type.
- Remove v1f32 from FPR32 register and disallow v1f32 as a legal type for
operations.
Patch by Ana Pazos!
llvm-svn: 197159
a vector packed single/double fp operation followed by a vector insert.
The effect is that the backend coverts the packed fp instruction
followed by a vectro insert into a SSE or AVX scalar fp instruction.
For example, given the following code:
__m128 foo(__m128 A, __m128 B) {
__m128 C = A + B;
return (__m128) {c[0], a[1], a[2], a[3]};
}
previously we generated:
addps %xmm0, %xmm1
movss %xmm1, %xmm0
we now generate:
addss %xmm1, %xmm0
llvm-svn: 197145
Aside from a few minor latency corrections, the major change here is a new
hazard recognizer which focuses on better dispatch-group formation on the
POWER7. As with the PPC970's hazard recognizer, the most important thing it
does is avoid load-after-store hazards within the same dispatch group. It uses
the POWER7's special dispatch-group-terminating nop instruction (instead of
inserting multiple regular nop instructions). This new hazard recognizer makes
use of the scheduling dependency graph itself, built using AA information, to
robustly detect the possibility of load-after-store hazards.
significant test-suite performance changes (the error bars are 99.5% confidence
intervals based on 5 test-suite runs both with and without the change --
speedups are negative):
speedups:
MultiSource/Benchmarks/FreeBench/pcompress2/pcompress2
-0.55171% +/- 0.333168%
MultiSource/Benchmarks/TSVC/CrossingThresholds-dbl/CrossingThresholds-dbl
-17.5576% +/- 14.598%
MultiSource/Benchmarks/TSVC/Reductions-dbl/Reductions-dbl
-29.5708% +/- 7.09058%
MultiSource/Benchmarks/TSVC/Reductions-flt/Reductions-flt
-34.9471% +/- 11.4391%
SingleSource/Benchmarks/BenchmarkGame/puzzle
-25.1347% +/- 11.0104%
SingleSource/Benchmarks/Misc/flops-8
-17.7297% +/- 9.79061%
SingleSource/Benchmarks/Shootout-C++/ary3
-35.5018% +/- 23.9458%
SingleSource/Regression/C/uint64_to_float
-56.3165% +/- 25.4234%
SingleSource/UnitTests/Vectorizer/gcc-loops
-18.5309% +/- 6.8496%
regressions:
MultiSource/Benchmarks/ASCI_Purple/SMG2000/smg2000
18.351% +/- 12.156%
SingleSource/Benchmarks/Shootout-C++/methcall
27.3086% +/- 14.4733%
llvm-svn: 197099
The assertion was checking that the virtual register VReg used to represent the
physical register PReg uses the same register class as the one passed to
MachineFunction::addLiveIn.
This is over-constraining because it is sufficient to check that the register
class of VReg (VRegRC) is a subclass of the register class of PReg (PRegRC) and
that VRegRC contains PReg.
Indeed, if VReg gets constrained because of some operation constraints
between two calls of MachineFunction::addLiveIn, the original assertion
cannot match.
This fixes <rdar://problem/15633429>.
llvm-svn: 197097
For one predicate to subsume another, they must both check the same condition
register. Failure to check this prerequisite was causing miscompiles.
Fixes PR18003.
llvm-svn: 197089
The linkers on these systems don't have anything special to do with these
symbols. Since the intent is for them to be absent from the final object,
just treat them as private.
llvm-svn: 197080
point reciprocal exponent, and floating-point reciprocal square root estimate
LLVM AArch64 intrinsics to use f32/f64 types, rather than their vector
equivalents.
llvm-svn: 197066
The tests were no longer using fast-isel at all (MachO needs an "ios" rather
than "darwin" triple at the moment and Linux needs ARM mode). Once that was
corrected, the verifier complained about a t2ADDri created for the alloca.
llvm-svn: 197046
I moved a test from avx512-vbroadcast-crash.ll to avx512-vbroadcast.ll
I defined HasAVX512 predicate as AssemblerPredicate. It means that you should invoke llvm-mc with "-mcpu=knl" to get encoding for AVX-512 instructions. I need this to let AsmMatcher to set different encoding for AVX and AVX-512 instructions that have the same mnemonic and operands (all scalar instructions).
llvm-svn: 197041
DAGCombiner could fold (truncate (load)) -> smaller load if the original
load was the width of the truncation result or wider. This patch extends
it to handle cases where the original load was narrower (and so the
extension type stays the same).
llvm-svn: 197030
The combination of inline asm, stack realignment, and dynamic allocas
turns out to be too common to reject out of hand.
ASan inserts empy inline asm fragments and uses aligned allocas.
Compiling any trivial function containing a dynamic alloca with ASan is
enough to trigger the check.
XFAIL the test cases that would be miscompiled and add one that uses the
relevant functionality.
llvm-svn: 196986
This re-lands commit r196876, which was reverted in r196879.
The tests have been fixed to pass on platforms with a stack alignment
larger than 4.
Update to clang side tests will land shortly.
llvm-svn: 196939
immediately after SSE scalar fp instructions like addss or mulss.
Added patterns to select SSE scalar fp arithmetic instructions from a scalar
fp operation followed by a blend.
For example, given the following code:
__m128 foo(__m128 A, __m128 B) {
A[0] += B[0];
return A;
}
previously we generated:
addss %xmm0, %xmm1
movss %xmm1, %xmm0
now we generate:
addss %xmm1, %xmm0
llvm-svn: 196925
Save S2(reg 18) only when we are calling floating point stubs that
have a return value of float or complex. Some more work to make this
better but this is the first step.
llvm-svn: 196921
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.
Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.
The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences. It is a no-op for targets other than SystemZ.
llvm-svn: 196906
One unusual feature of the z architecture is that the result of a
previous load can be reused indefinitely for subsequent loads, even if
a cache-coherent store to that location is performed by another CPU.
A special serializing instruction must be used if you want to force
a load to be reattempted.
Since volatile loads are not supposed to be omitted in this way,
we should insert a serializing instruction before each such load.
The same goes for atomic loads.
The patch implements this at the IR->DAG boundary, in a similar way
to atomic fences. It is a no-op for targets other than SystemZ.
llvm-svn: 196905
For stack frames requiring realignment, three pointers may be needed:
- ebp to address incoming arguments
- esi (could be any callee-saved register) to address locals
- esp to address outgoing arguments
We would use esi unconditionally without verifying that it did not
conflict with inline assembly.
This change doesn't do the verification, it simply emits a fatal error
on functions that use stack realignment, dynamic SP adjustments, and
inline assembly.
Because stack realignment is common on Windows, we also no longer assume
that MS inline assembly clobbers esp. Instead, we analyze the inline
instructions for implicit definitions and check if esp is there. If so,
we require the use of a base pointer and consider it in the condition
above.
Mostly fixes PR16830, but we could try harder to find a non-conflicting
base pointer.
Reviewers: sunfish
Differential Revision: http://llvm-reviews.chandlerc.com/D1317
llvm-svn: 196876
Patch by Jiangning Liu.
With some test case changes:
- intrinsic test added to the existing /test/CodeGen/AArch64/neon-aba-abd.ll.
- New test cases to cover movi 1D scenario without using the intrinsic in
test/CodeGen/AArch64/neon-mov.ll.
llvm-svn: 196806
Summary:
The MSA ld.[bhwd] and st.[bhwd] instructions scale the immediate by the
element size before use as an offset. The offset must therefore be a
multiple of the element size to be valid in these instructions. However,
an unaligned base address is valid in MSA.
This commit causes the compiler to emit valid code when the calculated
offset is not a multiple of the element size by accounting for the offset
using addiu and using a zero offset in the load/store.
Depends on D2338
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D2339
llvm-svn: 196777
Summary:
The immediate in these instructions is scaled before use as an offset.
They therefore have a wider reach than ld.b/st.b.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D2338
llvm-svn: 196775
When trying to eliminate an "sub sp, sp, #N" instruction by folding
it into an existing push/pop using dummy registers, we need to account
for the fact that this might affect precisely how "fp" gets set in the
prologue.
We were attempting this, but assuming that *whenever* we performed a
fold it would make a difference. This is false, for example, in:
push {r4, r7, lr}
add fp, sp, #4
vpush {d8}
sub sp, sp, #8
we can fold the "sub" into the "vpush", forming "vpush {d7, d8}".
However, in that case the "add fp" instruction mustn't change, which
we were getting wrong before.
Should fix PR18160.
llvm-svn: 196725
The current peephole optimizing for compare inst assumes an instr that
uses CPSR has an MO for ARM Cond code.However, for VSEL instructions
(vseqeq, vselgt, vselgt, vselvs), there is no such operand nor do
they support the modification of Cond Code.
llvm-svn: 196588
Since z has no setcc instruction as such, the choice of setBooleanContents
is a bit arbitrary. Currently it's set to ZeroOrOneBooleanContent,
so we produced a branch-free form when selecting between 0 and 1,
but not when selecting between 0 and -1. This patch handles the latter
case too.
At some point I'd like to measure whether it's better to use conditional
moves for constant selects on z196, but that's future work.
llvm-svn: 196578
in case the operands are constants and its difference is |1|.
It should be possible in those cases to rematerialize the result using
MIPS's slt and similar instructions.
The small update to some of the tests in cmov.ll, sel1c.ll and sel2c.ll was needed
otherwise the optimization implemented in this patch would have been triggered
(difference between the operands was 1) and that would have changed the semantic
of the tests.
llvm-svn: 196498
We were trying to fold the stack adjustment into the wrong instruction in the
situation where the entire basic-block was epilogue code. Really, it can only
ever be valid to do the folding precisely where the "add sp, ..." would be
placed so there's no need for a separate iterator to track that.
Should fix PR18136.
llvm-svn: 196493
given
declare void @llvm.memset.p0i8.i32(i8* nocapture, i8, i32, i32, i1)
declare void @foo()
define void @bar() {
call void @foo()
call void @llvm.memset.p0i8.i32(i8* null, i8 0, i32 188, i32 1, i1 false)
ret void
}
We used to produce
L_foo$stub:
.indirect_symbol _foo
.ascii "\364\364\364\364\364"
_memset$stub:
.indirect_symbol _memset
.ascii "\364\364\364\364\364"
We not produce a private stub for memset too.
Stubs are not needed with recent linkers, but we still produce them for darwin8.
Thanks to David Fang for confirming that gcc used to do this too.
llvm-svn: 196468
ARM symbol variants are written with parens instead of @ like this:
.word __GLOBAL_I_a(target1)
This commit adds support for parsing these symbol variants in
expressions. We introduce a new flag to MCAsmInfo that indicates the
parser should use parens to parse the symbol variant. The expression
parser is modified to look for symbol variants using parens instead
of @ when the corresponding MCAsmInfo flag is true.
The MCAsmInfo parens flag is enabled only for ARM on ELF.
By adding this flag to MCAsmInfo, we are able to get rid of
redundant ARM-specific symbol variants and use the generic variants
instead (e.g. VK_GOT instead of VK_ARM_GOT). We use the new
UseParensForSymbolVariant attribute in MCAsmInfo to correctly print
the symbol variants for arm.
To achive this we need to keep a handle to the MCAsmInfo in the
MCSymbolRefExpr class that we can check when printing the symbol
variant.
Updated Tests:
Changed case of symbol variant to match the generic kind.
test/CodeGen/ARM/tls-models.ll
test/CodeGen/ARM/tls1.ll
test/CodeGen/ARM/tls2.ll
test/CodeGen/Thumb2/tls1.ll
test/CodeGen/Thumb2/tls2.ll
PR18080
llvm-svn: 196424
this completes the basic port of ARM constant islands to Mips16.
More testing, code review, cleanup is in order but basically everything
seems to be working. A bug in gas is preventing some of the runtime
testing but I hope to resolve this soon.
llvm-svn: 196331
Unlike msvc, when handling a thiscall + sret gcc will
* Put the sret in %ecx
* Put the this pointer is (%esp)
This fixes, for example, calling stringstream::str.
llvm-svn: 196312
The backend converts 64-bit ORs into subreg moves if the upper 32 bits
of one operand and the low 32 bits of the other are known to be zero.
It then tries to peel away redundant ANDs from the upper 32 bits.
Since AND masks are canonicalized to exclude known-zero bits,
the test ORs the mask and the known-zero bits together before
checking for redundancy. The problem was that it was using the
wrong node when checking for known-zero bits, so could drop ANDs
that were still needed.
llvm-svn: 196267
- The fix to PR17631 fixes part of the cases where 'vzeroupper' should
not be issued before 'call' insn. There're other cases where helper
calls will be inserted not limited to epilog. These helper calls do
not follow the standard calling convention and won't clobber any YMM
registers. (So far, all call conventions will clobber any or part of
YMM registers.)
This patch enhances the previous fix to cover more cases 'vzerosupper' should
not be inserted by checking if that function call won't clobber any YMM
registers and skipping it if so.
llvm-svn: 196261
eliminateFrameIndex() has been reworked to handle both small & large frames
with either a FP or SP.
An additional Slot is required for Scavenging spills when not using FP for large frames.
Reworked the handling of Register Scavenging.
Whether we are using an FP or not, whether it is a large frame or not,
and whether we are using a large code model or not are now independent.
llvm-svn: 196091
These are used by MachO only at the moment, and (much like the existing
MOVW/MOVT set) work around the fact that the labels used in the actual
instructions often contain PC-dependent components, which means that repeatedly
materialising the same global can't be CSEed.
With small modifications, it could be adapted to how ELF finds the address of
_GLOBAL_OFFSET_TABLE_, which would give similar benefits in PIC mode there.
llvm-svn: 196090
When using large code model:
Global objects larger than 'CodeModelLargeSize' bytes are placed in sections named with a trailing ".large"
The folded global address of such objects are lowered into the const pool.
During inspection it was noted that LowerConstantPool() was using a default offset of zero.
A fix was made, but due to only offsets of zero being generated, testing only verifies the change is not detrimental.
Correct the flags emitted for explicitly specified sections.
We assume the size of the object queried by getSectionForConstant() is never greater than CodeModelLargeSize.
To handle greater than CodeModelLargeSize, changes to AsmPrinter would be required.
llvm-svn: 196087
Large frame offsets are loaded from the ConstantPool.
Where possible, offsets are encoded using the smaller MKMSK instruction.
Large frame offsets can only be used when there is a frame-pointer.
llvm-svn: 196085
Previously, we clobbered callee-saved registers when folding an "add
sp, #N" into a "pop {rD, ...}" instruction. This change checks whether
a register we're going to add to the "pop" could actually be live
outside the function before doing so and should fix the issue.
This should fix PR18081.
llvm-svn: 196046
Convert this test to FileCheck, and improve it to check for the instructions it
is trying to exclude instead of checking for register use (especially because
grepping for r1 can be thrown off, for example, by a use of r12).
llvm-svn: 195979
Some of these tests did not specify a cpu but were also sensitive to
instruction scheduling and/or register assignment choices. A few others
similarly-sensitive tests specified a cpu (often the POWER7), and while the P7
currently uses the default model for PPC64, this will soon change. For those
tests which should not really be cpu-dependent anyway, the cpu is set to the
generic 'ppc64'.
llvm-svn: 195977
This prevents the compiler from emitting invalid ld.[bhwd]'s and st.[bhwd]'s
when the stack frame is between 512 and 32,768 bytes in size.
llvm-svn: 195973
in constant islands for Mips16. We introdcuce JalB16 as a synomnym
for Jal16. It makes it easier to read and is also necessary because
Jal16 is a call instruction but JalB16 is being used as a branch.
Various parts of LLVM will not work properly even in this late stage of
the backend if we use what was declared as a call instruction to function
as a branch. For one, basic block labels may not get emitted in some
situations.
llvm-svn: 195968
conditional branches for very large targets. That will be the next small
patch. Everything now should in principle work as good (functionality
wise) as without constant islands so we decided at Mips/Imagination to
make constant islands the default for Mips16 now so that it will get
excercised a lot and this port is still experimentatl though hopefully soon
we will change the status. Some more cleanup and code review is in order
but things are converging fast.
llvm-svn: 195902
make PIC calls a little more efficient:
1. Remove instructions setting up $gp if it is known that a function has been
called at least once.
2. Save the address of a called function in a register instead of loading
it from the GOT at every call site.
llvm-svn: 195892
SGPRs are spilled into VGPRs using the {READ,WRITE}LANE_B32 instructions.
v2:
- Fix encoding of Lane Mask
- Use correct register flags, so we don't overwrite the low dword
when restoring multi-dword registers.
v3:
- Register spilling seems to hang the GPU, so replace all shaders
that need spilling with a dummy shader.
v4:
- Fix *LANE definitions
- Change destination reg class for 32-bit SMRD instructions
v5:
- Remove small optimization that was crashing Serious Sam 3.
https://bugs.freedesktop.org/show_bug.cgi?id=68224https://bugs.freedesktop.org/show_bug.cgi?id=71285
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195880
Writing to the M0 register from an SMRD instruction hangs the GPU, so
we need to use the SGPR_32 register class, which does not include M0.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195879
It is only used for asm printing.
On X86 we put basic block addresses on register before passing them to inline
asm, so the MO_MachineBasicBlock case was dead.
MO_ExternalSymbol was dead since any symbol being passed to inline asm
is represented as MO_GlobalAddress.
The MO_GlobalAddress and MO_Register cases were not tested.
llvm-svn: 195824
- Fix bug in (vsext (vzext x)) -> (vsext x) in SIGN_EXTEND_IN_REG
lowering where we need to check whether x is a vector type (in-reg
type) of i8, i16 or i32; otherwise, that optimization is not valid.
llvm-svn: 195779
We would wrongly transform the testcase into the equivalent of an AND with 1.
The problem was that, when testing whether the shifted-in bits of the right
shift were significant, we used the width of the final zero-extended result
rather than the width of the shifted value.
llvm-svn: 195731
A Direct stack map location records the address of frame index. This
address is itself the value that the runtime requested. This differs
from IndirectMemRefOp locations, which refer to a stack locations from
which the requested values must be loaded. Direct locations can
directly communicate the address if an alloca, while IndirectMemRefOp
handle register spills.
For example:
entry:
%a = alloca i64...
llvm.experimental.stackmap(i32 <ID>, i32 <shadowBytes>, i64* %a)
Since both the alloca and stackmap intrinsic are in the entry block,
and the intrinsic takes the address of the alloca, the runtime can
assume that LLVM will not substitute alloca with any intervening
value. This must be verified by the runtime by checking that the stack
map's location is a Direct location type. The runtime can then
determine the alloca's relative location on the stack immediately after
compilation, or at any time thereafter. This differs from Register and
Indirect locations, because the runtime can only read the values in
those locations when execution reaches the instruction address of the
stack map.
llvm-svn: 195712
Summary:
Moved the requirement for SelectionDAG::getConstant() to return legally
typed nodes slightly earlier. There were two optional DAGCombine passes
that were missed out and were required to produce type-legal DAGs.
Simplified a code-path in tryFoldToZero() to use SelectionDAG::getConstant().
This provides support for both promoted and expanded vector types whereas the
previous code only supported promoted vector types.
Fixes a "Type for zero vector elements is not legal" assertion detected by
an llvm-stress generated test.
Reviewers: resistor
CC: llvm-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2251
llvm-svn: 195635
to what is needed for constant islands. The prescan method for Mips16 constant
islands will eventually go away. It is only temporary and should be done
earlier when the instructions are first created or from the DAG. If we keep
it here we need to handle better the situation where constant islands
is called multiple times since don't want to prescan more than once.
llvm-svn: 195569
I had to move some code and I moved a declaration forward past it's first use
in the function but by nutty coincidence there was another variable of the same
name and type and with completely unrelated function that was declared globally
in the class so no compilation error ensued.
It required some unusual conditions for it to even matter. Caused test
case casts.c in test-suite to fail during compilation with a duplicate
symbol error. I would have noticed it during final code review for this port.
llvm-svn: 195565
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
Make tests more robust by removing hard-coded metadata numbers in CHECK lines.
llvm-svn: 195535
We were ignoring the ordered/onordered bits and also the signed/unsigned
bits of condition codes when lowering the DAG to MachineInstrs.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195514
We are going to drop debug info without a version number or with a different
version number, to make sure we don't crash when we see bitcode files with
different debug info metadata format.
llvm-svn: 195504
Utilizing the 8 and 16 bit comparison instructions, even when an input can
be folded into the comparison instruction itself, is typically not worth it.
There are too many partial register stalls as a result, leading to significant
slowdowns. By always performing comparisons on at least 32-bit
registers, performance of the calculation chain leading to the
comparison improves. Continue to use the smaller comparisons when
minimizing size, as that allows better folding of loads into the
comparison instructions.
rdar://15386341
llvm-svn: 195496
Improvements over r195317:
- Set/restore EnableFastISel flag instead of just running FastISel within
SelectAllBasicBlocks; the flag is checked in various places, and
FastISel won't run properly if those places don't do the right thing.
- Test looks for normal ISel versus FastISel behavior, and not
something more subtle that doesn't work everywhere.
Based on work by Andrea Di Biagio.
llvm-svn: 195491
- When simplifying the mask generation for BLEND, check whether that mask is
also consumed by other non-BLEND insns. If true, skip that simplification.
llvm-svn: 195476
I've no idea why I decided to handle TMxx differently from all the other
high/low logic operations, but it was a stupid thing to do. The high
registers aren't available as separate 32-bit registers on z10,
so subreg_h32 can't be used on a GR64 there.
I've normally been testing with z196 and with -O3 and so hadn't noticed
this until now.
llvm-svn: 195473
The legalizer can now do this type of expansion for more
type combinations without loading and storing to and
from the stack.
NOTE: This is a candidate for the 3.4 branch.
llvm-svn: 195398
AMD's processors family K7, K8, K10, K12, K15 and K16 are known to have SHLD/SHRD instructions with very poor latency. Optimization guides for these processors recommend using an alternative sequence of instructions. For these AMD's processors, I disabled folding (or (x << c) | (y >> (64 - c))) when we are not optimizing for size.
It might be beneficial to disable this folding for some of the Intel's processors. However, since I couldn't find specific recommendations regarding using SHLD/SHRD instructions on Intel's processors, I haven't disabled this peephole for Intel.
llvm-svn: 195383