This commit caused -Woverloaded-virtual warnings. The two new
TargetTransformInfo::getIntImmCost functions were only added to the superclass,
and to the X86 subclass. The other targets were not updated, and the
warning highlighted this by pointing out that e.g. ARMTTI::getIntImmCost was
hiding the two new getIntImmCost variants.
We could pacify the warning by adding "using TargetTransformInfo::getIntImmCost"
to the various subclasses, or turning it off, but I suspect that it's wrong to
leave the functions unimplemnted in those targets. The default implementations
return TCC_Free, which I don't think is right e.g. for ARM.
llvm-svn: 200058
The i8 type is not registered with any register class.
This causes a segmentation fault in MachineLICM::getRegisterClassIDAndCost.
The code selects the first type associated with register class FPR8,
which happens to be i8.
It uses this type (i8) to get the representative class pointer, which is 0.
It then uses this pointer to access a field, resulting in segmentation fault.
Since i8 type is not being used for printing any neon instruction
we can safely remove it.
llvm-svn: 200046
Retry commit r200022 with a fix for the build bot errors. Constant expressions
have (unlike instructions) module scope use lists and therefore may have users
in different functions. The fix is to simply ignore these out-of-function uses.
llvm-svn: 200034
This pass identifies expensive constants to hoist and coalesces them to
better prepare it for SelectionDAG-based code generation. This works around the
limitations of the basic-block-at-a-time approach.
First it scans all instructions for integer constants and calculates its
cost. If the constant can be folded into the instruction (the cost is
TCC_Free) or the cost is just a simple operation (TCC_BASIC), then we don't
consider it expensive and leave it alone. This is the default behavior and
the default implementation of getIntImmCost will always return TCC_Free.
If the cost is more than TCC_BASIC, then the integer constant can't be folded
into the instruction and it might be beneficial to hoist the constant.
Similar constants are coalesced to reduce register pressure and
materialization code.
When a constant is hoisted, it is also hidden behind a bitcast to force it to
be live-out of the basic block. Otherwise the constant would be just
duplicated and each basic block would have its own copy in the SelectionDAG.
The SelectionDAG recognizes such constants as opaque and doesn't perform
certain transformations on them, which would create a new expensive constant.
This optimization is only applied to integer constants in instructions and
simple (this means not nested) constant cast experessions. For example:
%0 = load i64* inttoptr (i64 big_constant to i64*)
Reviewed by Eric
llvm-svn: 200022
This commit teaches the X86 backend to create the same X86 instructions when it
lowers an sadd/ssub with overflow intrinsic and a conditional branch that uses
that overflow result. This allows SelectionDAG to recognize and remove one of
the redundant operations.
This fixes <rdar://problem/15874016> and <rdar://problem/15661073>.
Reviewed by Nadav
llvm-svn: 199976
Originally, BLX was passed as operand #0 in MachineInstr and as operand
#2 in MCInst. But now, it's operand #2 in both cases.
This patch also removes unnecessary FileCheck in the test case added by r199127.
llvm-svn: 199928
This pattern uses an SDNodeXForm, which isn't being emitted for some
reason. I can get it to work by attaching the PatLeaf that has the
XForm to the argument in the output pattern, but this results in an
immediate being used in a register operand, which the backend can't
handle yet.
llvm-svn: 199918
The control flow finalizer would sometimes use an ALU_POP_AFTER
instruction before the vetex fetch clause instead of using a POP
instruction after it.
llvm-svn: 199917
Implement the getUnrollingPreferences() function for
AMDGPUTargetTransformInfo so that loops that do address calculations
on pointers derived from alloca are unconditionally unrolled.
Unrolling these loops makes it more likely that SROA will be able to
eliminate the allocas, which is a big win for R600 since memory
allocated by alloca (private memory) is really slow.
llvm-svn: 199916
The unit test is now disabled on non-asserts builds.
The CF stack can be corrupted if you use CF_ALU_PUSH_BEFORE,
CF_ALU_ELSE_AFTER, CF_ALU_BREAK, or CF_ALU_CONTINUE when the number of
sub-entries on the stack is greater than or equal to the stack entry
size and sub-entries modulo 4 is either 0 or 3 (on cedar the bug is
present when number of sub-entries module 8 is either 7 or 0)
We choose to be conservative and always apply the work-around when the
number of sub-enries is greater than or equal to the stack entry size,
so that we can safely over-allocate the stack when we are unsure of the
stack allocation rules.
reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 199905
With constant-sharing, litpool loads consume 4 + N*2 bytes of code, but
movw/movt pairs consume 8*N. This means litpools are better than movw/movt even
with just one use. Other materialisation strategies can still be better though,
so the logic is a little odd.
llvm-svn: 199891
This is a horrible bit of code. We're calling a simplification routine *in the middle* of type legalization. We tell the
simplification routine that it's running after legalization, but some of the types it will encounter will be illegal! The
fix is only to invoke the simplification if the types in question were legal, so that none of its invariants will be violated.
llvm-svn: 199847
This reverts commit 35b8331cad6eb512a2506adbc394201181da94ba.
The -debug-only flag for llc doesn't appear to be available in
all build configurations.
llvm-svn: 199845
The CF stack can be corrupted if you use CF_ALU_PUSH_BEFORE,
CF_ALU_ELSE_AFTER, CF_ALU_BREAK, or CF_ALU_CONTINUE when the number of
sub-entries on the stack is greater than or equal to the stack entry
size and sub-entries modulo 4 is either 0 or 3 (on cedar the bug is
present when number of sub-entries module 8 is either 7 or 0)
We choose to be conservative and always apply the work-around when the
number of sub-enries is greater than or equal to the stack entry size,
so that we can safely over-allocate the stack when we are unsure of the
stack allocation rules.
reviewed-by: Vincent Lejeune <vljn at ovi.com>
llvm-svn: 199842
This patch restores the ARM mode if the user's inline assembly
does not. In the object streamer, it ensures that instructions
following the inline assembly are encoded correctly and that
correct mapping symbols are emitted. For the asm streamer, it
emits a .arm or .thumb directive.
This patch does not ensure that the inline assembly contains
the ADR instruction to switch modes at runtime.
The problem we need to solve is code like this:
int foo(int a, int b) {
int r = a + b;
asm volatile(
".align 2 \n"
".arm \n"
"add r0,r0,r0 \n"
: : "r"(r));
return r+1;
}
If we compile this function in thumb mode then the inline assembly
will switch to arm mode. We need to make sure that we switch back to
thumb mode after emitting the inline assembly or we will incorrectly
encode the instructions that follow (i.e. the assembly instructions
for return r+1).
Based on patch by David Peixotto
Change-Id: Ib57f6d2d78a22afad5de8693fba6230ff56ba48b
llvm-svn: 199818
This actually totally breaks and causes the machine verifier to cry in several cases, one of which being:
%RAX<def> = COPY %RCX<kill>
%ECX<def> = COPY %EAX<kill>, %RAX<imp-use,kill>
These subregister copies are together identified as noops, so are both removed. However, the second one as it has an imp-use gets converted into a kill:
%ECX<def> = KILL %EAX<kill>, %RAX<imp-use,kill>
As the original COPY has been removed, the verifier goes into tears at the use of undefined EAX and RAX.
There are several hacky solutions to this hacky problem (which is all to do with imp-use/def weirdnesses), but the least hacky I've come up with is to *always* remove COPYs by converting to KILLs. KILLs are no-ops to the code generator so the generated code doesn't change (which is why they were partially used in the first place), but using them also keeps the def/use and imp-def/imp-use chains alive:
%RAX<def> = KILL %RCX<kill>
%ECX<def> = KILL %EAX<kill>, %RAX<imp-use,kill>
The patch passes all test cases including the ones that check the removal of MOVs in this circumstance, along with an extra test I added to check subregister behaviour (which made the machine verifier fall over before my patch).
The patch also adds some DEBUG() statements because the file hadn't got any.
llvm-svn: 199797
Fix a crash in SjLjEHPrepare::lowerIncomingArguments caused by treating
VectorType like an aggregate. It's first-class!
<rdar://problem/15854596>
llvm-svn: 199768
For PPC64 SVR (and Darwin), the stores that take byval aggregate parameters
from registers into the stack frame had MachinePointerInfo objects with
incorrect offsets. These offsets are relative to the object itself, not to the
stack frame base.
This fixes self hosting on PPC64 when compiling with -enable-aa-sched-mi.
llvm-svn: 199763
It was commited as r199628 but reverted in r199628 as causing
regression test failed. It's because of old vervsion of patch
I used to commit. Sorry for mistake.
llvm-svn: 199704
Add target specific rules for combining vselect dag nodes into movss/movsd
when possible.
If the vector type of the vselect dag node in input is either MVT::v4i13 or
MVT::v4f32, then try to fold according to rules:
1) fold (vselect (build_vector (0, -1, -1, -1)), A, B) -> (movss A, B)
2) fold (vselect (build_vector (-1, 0, 0, 0)), A, B) -> (movss B, A)
If the vector type of the vselect dag node in input is either MVT::v2i64 or
MVT::v2f64 (and we have SSE2), then try to fold according to rules:
3) fold (vselect (build_vector (0, -1)), A, B) -> (movsd A, B)
4) fold (vselect (build_vector (-1, 0)), A, B) -> (movsd B, A)
llvm-svn: 199683
The way that stack coloring updated MMOs when merging stack slots, while
correct, is suboptimal, and is incompatible with the use of AA during
instruction scheduling. The solution, which involves the use of const_cast (and
more importantly, updating the IR from within an MI-level pass), obviously
requires some explanation:
When the stack coloring pass was originally committed, the code in
ScheduleDAGInstrs::buildSchedGraph tracked possible alias sets by using
GetUnderlyingObject, and all load/store and store/store memory control
dependencies where added between SUs at the object level (where only one
object, that returned by GetUnderlyingObject, was used to identify the object
associated with each MMO). When stack coloring merged stack slots, it would
replace MMOs derived from the remapped alloca with the alloca with which the
remapped alloca was being replaced. Because ScheduleDAGInstrs only used single
objects, and tracked alias sets at the object level, this was a fine solution.
In r169744, (Andy and) I updated the code in ScheduleDAGInstrs to use
GetUnderlyingObjects, and track alias sets using, potentially, multiple
underlying objects for each MMO. This was done, primarily, to provide the
ability to look through PHIs, and provide better scheduling for
induction-variable-dependent loads and stores inside loops. At this point, the
MMO-updating code in stack coloring became suboptimal, because it would clear
the MMOs for (i.e. completely pessimize) all instructions for which r169744
might help in scheduling. Updating the IR directly is the simplest fix for this
(and the one with, by far, the least compile-time impact), but others are
possible (we could give each MMO a small vector of potential values, or make
use of a remapping table, constructed from MFI, inside ScheduleDAGInstrs).
Unfortunately, replacing all MMO values derived from the remapped alloca with
the base replacement alloca fundamentally breaks our ability to use AA during
instruction scheduling (which is critical to performance on some targets). The
reason is that the original MMO might have had an offset (either constant or
dynamic) from the base remapped alloca, and that offset is not present in the
updated MMO. One possible way around this would be to use
GetPointerBaseWithConstantOffset, and update not only the MMO's value, but also
its offset based on the original offset. Unfortunately, this solution would
only handle constant offsets, and for safety (because AA is not completely
restricted to deducing relationships with constant offsets), we would need to
clear all MMOs without constant offsets over the entire function. This would be
an even worse pessimization than the current single-object restriction. Any
other solution would involve passing around a vector of remapped allocas, and
teaching AA to use it, introducing additional complexity and overhead into AA.
Instead, when remapping an alloca, we replace all IR uses of that alloca as
well (optionally inserting a bitcast as necessary). This is even more efficient
that the old MMO-updating code in the stack coloring pass (because it removes
the need to call GetUnderlyingObject on all MMO values), removes the
single-object pessimization in the default configuration, and enables the
correct use of AA during instruction scheduling (all without any additional
overhead).
LLVM now no longer miscompiles itself on x86_64 when using -enable-misched
-enable-aa-sched-mi -misched-bottomup=0 -misched-topdown=0 -misched=shuffle!
Fixed PR18497.
Because the alloca replacement is now done at the IR level, unless the MMO
directly refers to the remapped alloca, the change cannot be seen at the MI
level. As a result, there is no good way to fix test/CodeGen/X86/pr14090.ll.
llvm-svn: 199658
This patch adds two new target-independent calling conventions for runtime
calls - PreserveMost and PreserveAll.
The target-specific implementation for X86-64 is defined as following:
- Arguments are passed as for the default C calling convention
- The same applies for the return value(s)
- PreserveMost preserves all GPRs - except R11
- PreserveAll preserves all GPRs and all XMMs/YMMs - except R11
Reviewed by Lang and Philip
llvm-svn: 199508
Summary:
$rs and $rt were the wrong way round in the .td and the testcase wasn't
strict enough to detect the mistake.
Reviewers: matheusalmeida
Reviewed By: matheusalmeida
Differential Revision: http://llvm-reviews.chandlerc.com/D2554
llvm-svn: 199498
than it needs to be by 1 bit but I need to finish some other things so
that all the boundary cases will work in that situation. constpool.c
in test-suite will fail to assemble under our new internal test-suite sync
without this change.
llvm-svn: 199343
This fixes a regression intruced by r199135.
Revision 199135 tried to simplify part of the logic in method
DAGCombiner::SimplifyVBinOp introducing calls to method BuildVectorSDNode::isConstant().
However, that revision wrongly changed the check performed by method
SimplifyVBinOp to identify dag nodes that can be folded.
Before revision 199135, that method only tried to simplify vector binary operations
if both operands were build_vector of Constant/ConstantFP/Undef only.
After revision 199135, method SimplifyVBinop tried to
simplify also vector binary operations with only one constant operand.
This fixes the problem restoring the old behavior of SimplifyVBinOp.
llvm-svn: 199328
When expanding neon pseudo stores, it may miss the implicit uses of sub
regs, which may cause post RA scheduler reorder instructions that
breakes anti dependency.
For example:
VST1d64QPseudo %R0<kill>, 16, %Q9_Q10, pred:14, pred:%noreg
will be expanded to
VST1d64Q %R0<kill>, 16, %D18, pred:14, pred:%noreg;
An instruction that defines %D20 may be scheduled before the store by
mistake.
This patches adds implicit uses for such case. For the example above, it
emits:
VST1d64Q %R0<kill>, 8, %D18, pred:14, pred:%noreg, %Q9_Q10<imp-use>
llvm-svn: 199282
The changes caused by folding an sp-adjustment into a "pop" previously
disrupted the forward search for the final real instruction in a
terminating block. This switches to a backward search (skipping debug
instrs).
This fixes PR18399.
Patch by Zhaoshi.
llvm-svn: 199266
We should set them to expand for now since there are no patterns
dealing with them. Actually, there are no instructions either so I
doubt they'll ever be acceptable.
llvm-svn: 199265
This also fixes the placement of the function label comment. It was being
placed next to the mips16 directive instead of next to the label.
llvm-svn: 199245
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199218
This fixes a regression intruced by r198113.
Revision r198113 introduced an algorithm that tries to fold a vector shift
by immediate count into a build_vector if the input vector is a known vector
of constants.
However the algorithm only worked under the assumption that the input vector
type and the shift type are exactly the same.
This patch disables the folding of vector shift by immediate count if the
input vector type and the shift value type are not the same.
llvm-svn: 199213
Representing dllexport/dllimport as distinct linkage types prevents using
these attributes on templates and inline functions.
Instead of introducing further mixed linkage types to include linkonce and
weak ODR, the old import/export linkage types are replaced with a new
separate visibility-like specifier:
define available_externally dllimport void @f() {}
@Var = dllexport global i32 1, align 4
Linkage for dllexported globals and functions is now equal to their linkage
without dllexport. Imported globals and functions must be either
declarations with external linkage, or definitions with
AvailableExternallyLinkage.
llvm-svn: 199204
When creating a virtual register for a def, the value type should be
used to pick the register class. If we only use the register class
constraint on the instruction, we might pick a too large register class.
Some registers can store values of different sizes. For example, the x86
xmm registers can hold f32, f64, and 128-bit vectors. The three
different value sizes are represented by register classes with identical
register sets: FR32, FR64, and VR128. These register classes have
different spill slot sizes, so it is important to use the right one.
The register class constraint on an instruction doesn't necessarily care
about the size of the value its defining. The value type determines
that.
This fixes a problem where InstrEmitter was picking 32-bit register
classes for 64-bit values on SPARC.
llvm-svn: 199187
We need to ensure that StackSlotColoring.cpp does not reuse stack
spill slots in functions that call "returns_twice" functions such as
setjmp(), otherwise this can lead to miscompiled code, because a stack
slot would be clobbered when it's still live.
This was already handled correctly for functions that call setjmp()
(though this wasn't covered by a test), but not for functions that
invoke setjmp().
We fix this by changing callsFunctionThatReturnsTwice() to check for
invoke instructions.
This fixes PR18244.
llvm-svn: 199180
This commit teaches DAG to reassociate vector ops, which in turn enables
constant folding of vector op chains that appear later on during custom lowering
and DAG combine.
Reviewed by Andrea Di Biagio
llvm-svn: 199135
The issue is caused when Post-RA scheduler reorders a bundle instruction
(IT block). However, it only flips the CPSR liveness of the bundle instruction,
leaves the instructions inside the bundle unchanged, which causes inconstancy and crashes
Thumb2SizeReduction.cpp::ReduceMBB().
llvm-svn: 199127
APInt only knows how to compare values with the same BitWidth and asserts
in all other cases.
With this fix, function PerformORCombine does not use the APInt equality
operator if the APInt values returned by 'isConstantSplat' differ in BitWidth.
In that case they are different and no comparison is needed.
llvm-svn: 199119
The old mask in f24 wasn't well chosen because the lshr would always be zero.
CodeGen didn't detect this but InstCombine would. The new mask ensures
that both shifts are needed.
f26 is specifically testing for a wrap-around mask. The AND can be applied
to just the shift left, either before or after the shift. Again, CodeGen
kept it in the original form but InstCombine would mask after the shift
instead. The exact choice of NILF isn't important for the test so I just
dropped it and kept the rotate.
llvm-svn: 199115
...into (ashr (shl (anyext X), ...), ...), which requires one fewer
instruction. The (anyext X) can sometimes be simplified too.
I didn't do this in DAGCombiner because widening shifts isn't a win
on all targets.
llvm-svn: 199114
This patch covered 2 more scenarios:
1. Two operands of shuffle_vector are the same, like
%shuffle.i = shufflevector <8 x i8> %a, <8 x i8> %a, <8 x i32> <i32 0, i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32 14>
2. One of operands is undef, like
%shuffle.i = shufflevector <8 x i8> %a, <8 x i8> undef, <8 x i32> <i32 0, i32 2, i32 4, i32 6, i32 8, i32 10, i32 12, i32 14>
After this patch, perm instructions will have chance to be emitted instead of lots of INS.
llvm-svn: 199069