When demangling a CV-qualified function type with a final parameter with
a reference type, we would insert the CV qualification on the parameter
rather than the function, and in the process adjust the insertion point
by one extra, splitting the type name. This avoids doing so, even
though the attribution is still incorrect.
llvm-svn: 292965
Summary: As per title. This will add the instructiions we are interested in in the worklist.
Reviewers: mehdi_amini, majnemer, andreadb
Differential Revision: https://reviews.llvm.org/D29081
llvm-svn: 292957
Regalloc creates COPY instructions which do not formally use VALU.
That results in v_mov instructions displaced after exec mask modification.
One pass which do it is SIOptimizeExecMasking, but potentially it can be
done by other passes too.
This patch adds a pass immediately after regalloc to add implicit exec
use operand to all VGPR copy instructions.
Differential Revision: https://reviews.llvm.org/D28874
llvm-svn: 292956
In order to follow the pattern of the existing 'slow-misaligned-128store'
option, rename the option 'no-quad-ldst-pairs' to 'slow-paired-128'.
llvm-svn: 292954
Summary:
This is in keeping with LLVM convention. The classes are InstPrinters, but the library is ${target}AsmPrinter.
This patch is in response to bryant pointing out to me that Lanai was the only backend deviating from convention here. Thanks!
Reviewers: jpienaar, bryant
Subscribers: mgorny, jgosnell, llvm-commits
Differential Revision: https://reviews.llvm.org/D29043
llvm-svn: 292953
Also fixes a much worse bug where we emitted the wrong gap size for the
def range uncovered by the test for this issue.
Fixes PR31726.
llvm-svn: 292949
Summary:
When conditional branches with complex conditions are split into
multiple branches in SelectionDAGBuilder::FindMergedConditions, also
handle inverted conditions. These may sometimes appear without having
been optimized by InstCombine when CodeGenPrepare decides to sink and
duplicate cmp instructions, causing them to have only one use. This
problem can be increased by e.g. GVNHoist hiding more cmps from
InstCombine by combining equivalent cmps from different blocks.
For example codegen X & !(Y | Z) as:
jmp_if_X TmpBB
jmp FBB
TmpBB:
jmp_if_notY Tmp2BB
jmp FBB
Tmp2BB:
jmp_if_notZ TBB
jmp FBB
Reviewers: bogner, MatzeB, qcolombet
Subscribers: llvm-commits, hiraditya, mcrosier, sebpop
Differential Revision: https://reviews.llvm.org/D28380
llvm-svn: 292944
a lazy-asserting PoisoningVH.
AssertVH is fundamentally incompatible with cache-invalidation of
analysis results. The invaliadtion happens after the AssertingVH has
already fired. Instead, use a PoisoningVH that will assert if the
dangling handle is ever used rather than merely be assigned or
destroyed.
This patch also removes all of the (numerous) doomed attempts to work
around this fundamental incompatibility. It is a pretty significant
simplification IMO.
The most interesting change is in the Inliner where we still do some
clearing because we don't want to rely on the coarse grained
invalidation strategy of the containing pass manager. However, I prefer
the approach that contains this logic to the cleanup phase of the
Inliner, and I think we could enhance the CGSCC analysis management
layer to make this even better in the future if desired.
The rest is straight cleanup.
I've also added a test for one of the harder cases to work around: when
a *module analysis* contains many AssertingVHes pointing at functions.
Differential Revision: https://reviews.llvm.org/D29006
llvm-svn: 292928
Added early out for single undef input - we were already supporting (and testing) this in the constant folding code, we just do it quicker now
Drop undef handling from demanded elts code now that we handle it fully in InstCombiner::visitCallInst
llvm-svn: 292913
Summary:
Use the O_CLOEXEC flag only when it is available. Some old systems (e.g.
SLES10) do not support this flag. POSIX explicitly guarantees that this
flag can be checked for using #if, so there is no need for a CMake
check.
In case O_CLOEXEC is not supported, fall back to fcntl(FD_CLOEXEC)
instead.
Reviewers: rnk, rafael, mgorny
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D28894
llvm-svn: 292912
Summary:
This adds a cross-platform way of setting the current working directory
analogous to the existing current_path() function used for retrieving
it. The function will be used in lldb.
Reviewers: rafael, silvas, zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29035
llvm-svn: 292907
Removed data members ReduxWidth and MinVecRegSize + some C++11 stylish
improvements.
Differential Revision: https://reviews.llvm.org/D29010
llvm-svn: 292899
With this change dominator tree remains in sync after each step of loop
peeling.
Differential Revision: https://reviews.llvm.org/D29029
llvm-svn: 292895
Verifications of dominator tree and loop info are expensive operations
so they are disabled by default. They can be enabled by command line
options -verify-dom-info and -verify-loop-info. These options however
enable checks only in files Dominators.cpp and LoopInfo.cpp. If some
transformation changes dominaror tree and/or loop info, it would be
convenient to place similar checks to the files implementing the
transformation.
This change makes corresponding flags global, so they can be used in
any file to optionally turn verification on.
llvm-svn: 292889
The GeneralShuffle::add() method used to have an assert that made sure that
source elements were at least as big as the destination elements. This was
wrong, since it is actually expected that an EXTRACT_VECTOR_ELT node with a
smaller source element type than the return type gets extended.
Therefore, instead of asserting this, it is just checked and if this is the
case 'false' is returned from the GeneralShuffle::add() method. This case
should be very rare and is not handled further by the backend.
Review: Ulrich Weigand.
llvm-svn: 292888
Summary:
This teaches getNode to simplify extracting from Undef. This is similar to what is done for EXTRACT_VECTOR_ELT. It also adds support for extracting from CONCAT_VECTOR when we can reuse one of the inputs to the concat. These seem like simple non-target specific optimizations.
For X86 we currently handle undef in extractSubvector, but not all EXTRACT_SUBVECTOR creations go through there.
Ultimately, my motivation here is to simplify extractSubvector and remove custom lowering for EXTRACT_SUBVECTOR since we don't do anything but handle undef and BUILD_VECTOR optimizations, but those should be DAG combines.
Reviewers: RKSimon, delena
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29000
llvm-svn: 292876
Summary:
There's a comment in XorSlowCase that says "0^0==1" which isn't true. 0 xored with 0 is still 0. So I don't think we need to clear any unused bits here.
Now there is no difference between XorSlowCase and AndSlowCase/OrSlowCase other than the operation being performed
Reviewers: majnemer, MatzeB, chandlerc, bkramer
Reviewed By: MatzeB
Subscribers: chfast, llvm-commits
Differential Revision: https://reviews.llvm.org/D28986
llvm-svn: 292873
A register unit may be allocatable and non-reserved but some of the
register(tuples) built with it are reserved. We still need to calculate
liveness in this case.
Note to out of tree targets: If you start seeing machine verifier errors
with this commit, it probably means that you do not properly mark super
registers of reserved register as reserved. See for example r292836 or
r292870 for example on how to fix that.
rdar://29996737
Differential Revision: https://reviews.llvm.org/D28881
llvm-svn: 292871
When a register like R1 is reserved, X1 should be reserved as well. This
was already done "manually" when 64bit code was enabled, however using
the markSuperRegs() function on the base register is more convenient and
allows to use the checksAllSuperRegsMarked() function even in 32bit mode
to avoid accidental breakage in the future.
This is also necessary to allow https://reviews.llvm.org/D28881
Differential Revision: https://reviews.llvm.org/D29056
llvm-svn: 292870
Running non-LCSSA-preserving LoopSimplify followed by LCSSA on (roughly) the
same loop is incorrect, since LoopSimplify may break LCSSA arbitrarily higher
in the loop nest. Instead, run LCSSA first, and then run LCSSA-preserving
LoopSimplify on the result.
This fixes PR31718.
Differential Revision: https://reviews.llvm.org/D29055
llvm-svn: 292854
Summary: promoteIndirectCall should be a utility function that could be invoked by other optimization passes.
Reviewers: davidxl
Reviewed By: davidxl
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D29051
llvm-svn: 292850
Summary:
The LibFunc::Func enum holds enumerators named for libc functions.
Unfortunately, there are real situations, including libc implementations, where
function names are actually macros (musl uses "#define fopen64 fopen", for
example; any other transitively visible macro would have similar effects).
Strictly speaking, a conforming C++ Standard Library should provide any such
macros as functions instead (via <cstdio>). However, there are some "library"
functions which are not part of the standard, and thus not subject to this
rule (fopen64, for example). So, in order to be both portable and consistent,
the enum should not use the bare function names.
The old enum naming used a namespace LibFunc and an enum Func, with bare
enumerators. This patch changes LibFunc to be an enum with enumerators prefixed
with "LibFFunc_". (Unfortunately, a scoped enum is not sufficient to override
macros.)
There are additional changes required in clang.
Reviewers: rsmith
Subscribers: mehdi_amini, mzolotukhin, nemanjai, llvm-commits
Differential Revision: https://reviews.llvm.org/D28476
llvm-svn: 292848
When calculating kills, a register may be considered live because a part
of it is live, but if there is a use of that (whole) register, the whole
register (and its subregisters) need to be added to the live set.
llvm-svn: 292845
Summary:
This patch changes the layout of DoubleAPFloat, and adjust all
operations to do either:
1) (IEEEdouble, IEEEdouble) -> (uint64_t, uint64_t) -> PPCDoubleDoubleImpl,
then run the old algorithm.
2) Do the right thing directly.
1) includes multiply, divide, remainder, mod, fusedMultiplyAdd, roundToIntegral,
convertFromString, next, convertToInteger, convertFromAPInt,
convertFromSignExtendedInteger, convertFromZeroExtendedInteger,
convertToHexString, toString, getExactInverse.
2) includes makeZero, makeLargest, makeSmallest, makeSmallestNormalized,
compare, bitwiseIsEqual, bitcastToAPInt, isDenormal, isSmallest,
isLargest, isInteger, ilogb, scalbn, frexp, hash_value, Profile.
I could split this into two patches, e.g. use
1) for all operatoins first, then incrementally change some of them to
2). I didn't do that, because 1) involves code that converts data between
PPCDoubleDoubleImpl and (IEEEdouble, IEEEdouble) back and forth, and may
pessimize the compiler. Instead, I find easy functions and use
approach 2) for them directly.
Next step is to implement move multiply and divide from 1) to 2). I don't
have plans for other functions in 1).
Differential Revision: https://reviews.llvm.org/D27872
llvm-svn: 292839