just ask ScalarEvolution for it on demand. This helps IVUsers be more robust
in the case of expressions changing underneath it. This fixes PR6862.
llvm-svn: 101819
numerator is an induction variable. For example, with code like this:
for (i=0;i<n;++i)
x[i%n] = 0;
IndVarSimplify will now recognize that i is always less than n inside
the loop, and eliminate the remainder.
llvm-svn: 101113
expression is a UDiv and it doesn't appear that the UDiv came from
the user's source.
ScalarEvolution has recently figured out how to compute a tripcount
expression for the inner loop in
SingleSource/Benchmarks/Shootout/sieve.c, using a udiv. Emitting a
udiv instruction dramatically slows down the enclosing loop.
llvm-svn: 101068
the loop exit test. This usually doesn't come up for a variety of
reasons, but it isn't impossible, so make IndVarSimplify handle it
conservatively.
llvm-svn: 101008
variables. For example, with code like this:
for (i=0;i<n;++i)
if (i<n)
x[i] = 0;
IndVarSimplify will now recognize that i is always less than n inside
the loop, and eliminate the if.
llvm-svn: 101000
checker. Amusingly, we already had tests that we should
have rejects because they would be miscompiled in the
testsuite.
The remaining issue with this is that we don't check that
the branch causes us to exit the loop if it fails, so we
don't actually know if we remain in bounds.
llvm-svn: 100284
this cleans up a bunch of code and also fixes several crashes and
miscompiles. More to come unfortunately, this optimization
is quite broken.
llvm-svn: 100270
which branch on undef to branch on a boolean constant for the edge
exiting the loop. This helps ScalarEvolution compute trip counts for
loops.
Teach ScalarEvolution to recognize single-value PHIs, when safe, and
ForgetSymbolicName to forget such single-value PHI nodes as apprpriate
in ForgetSymbolicName.
llvm-svn: 97126
true or false as its exit condition. These are usually eliminated by
SimplifyCFG, but the may be left around during a pass which wishes
to preserve the CFG.
llvm-svn: 96683
bug fixes, and with improved heuristics for analyzing foreign-loop
addrecs.
This change also flattens IVUsers, eliminating the stride-oriented
groupings, which makes it easier to work with.
llvm-svn: 95975
This new version is much more aggressive about doing "full" reduction in
cases where it reduces register pressure, and also more aggressive about
rewriting induction variables to count down (or up) to zero when doing so
reduces register pressure.
It currently uses fairly simplistic algorithms for finding reuse
opportunities, but it introduces a new framework allows it to combine
multiple strategies at once to form hybrid solutions, instead of doing
all full-reduction or all base+index.
llvm-svn: 94061
input filename so that opt doesn't print the input filename in the
output so that grep lines in the tests don't unintentionally match
strings in the input filename.
llvm-svn: 81537
sinking code, since they are special. If the loop preheader happens
to be the entry block of a function, don't sink static allocas
out of it. This fixes PR4775.
llvm-svn: 80010
TargetData is not present. It still uses TargetData when available.
This generalization also fixed some limitations in the TargetData
case; the attached testcase covers this.
llvm-svn: 79344
Getelementptrs that are defined to wrap are virtually useless to
optimization, and getelementptrs that are undefined on any kind
of overflow are too restrictive -- it's difficult to ensure that
all intermediate addresses are within bounds. I'm going to take
a different approach.
Remove a few optimizations that depended on this flag.
llvm-svn: 76437
the operands have pointer type, so that the resulting type matches
the original SCEV type, and so that unnecessary ptrtoints are
avoided in common cases.
llvm-svn: 75680
an individual exhaustive evaluation reflects only the exit value
implied by an individual exit, which may differ from the actual
exit value of the loop if there are other exits. This fixes PR4477.
llvm-svn: 74447
inserted to replace that value must dominate all of of the basic
blocks associated with the uses of the value in the PHI, not just
one of them.
llvm-svn: 74376
terminator, instead of after the last phi. This fixes a bug
exposed by ScalarEvolution analyzing more kinds of loops.
This fixes PR4436.
llvm-svn: 74072
SCEVUnknowns with identical Instructions to be equal. This allows
it to analze cases such as the attached testcase, where the front-end
has cloned the loop controlling expression. Along with r73805, this
lets IndVarSimplify eliminate all the sign-extend casts in the
loop in the attached testcase.
llvm-svn: 73807
casted induction variables in cases where the cast
isn't foldable. It ended up being a pessimization in
many cases. This could be fixed, but it would require
a bunch of complicated code in IVUsers' clients. The
advantages of this approach aren't visible enough to
justify it at this time.
llvm-svn: 73706
obscuring what would otherwise be a low-bits mask. Use ComputeMaskedBits
to compute what ShrinkDemandedConstant knew about to reconstruct a
low-bits mask value.
llvm-svn: 73540
they contain multiplications of constants with add operations.
This helps simplify several kinds of things; in particular it
helps simplify expressions like ((-1 * (%a + %b)) + %a) to %b,
as expressions like this often come up in loop trip count
computations.
llvm-svn: 73361
induction variable when the addrec to be expanded does not require
a wider type. This eliminates the need for IndVarSimplify to
micro-manage SCEV expansions, because SCEVExpander now
automatically expands them in the form that IndVarSimplify considers
to be canonical. (LSR still micro-manages its SCEV expansions,
because it's optimizing for the target, rather than for
other optimizations.)
Also, this uses the new getAnyExtendExpr, which has more clever
expression simplification logic than the IndVarSimplify code it
replaces, and this cleans up some ugly expansions in code such as
the included masked-iv.ll testcase.
llvm-svn: 73294
integer and floating-point opcodes, introducing
FAdd, FSub, and FMul.
For now, the AsmParser, BitcodeReader, and IRBuilder all preserve
backwards compatability, and the Core LLVM APIs preserve backwards
compatibility for IR producers. Most front-ends won't need to change
immediately.
This implements the first step of the plan outlined here:
http://nondot.org/sabre/LLVMNotes/IntegerOverflow.txt
llvm-svn: 72897
possible. For example, it now emits
%p.2.ip.1 = getelementptr [3 x [3 x double]]* %p, i64 2, i64 %tmp, i64 1
instead of the equivalent but less obvious
%p.2.ip.1 = getelementptr [3 x [3 x double]]* %p, i64 0, i64 %tmp, i64 19
llvm-svn: 72452
leave the original comparison in place if it has other uses, since the
other uses won't be dominated by the new comparison instruction.
llvm-svn: 72369
sending SCEVUnknowns to expandAddToGEP. This avoids the need for
expandAddToGEP to bend the rules and peek into SCEVUnknown
expressions.
Factor out the code for testing whether a SCEV can be factored by
a constant for use in a GEP index. This allows it to handle
SCEVAddRecExprs, by recursing.
As a result, SCEVExpander can now put more things in GEP indices,
so it emits fewer explicit mul instructions.
llvm-svn: 72366
Fix by clearing the rewriter cache before deleting the trivially dead
instructions.
Also make InsertedExpressions use an AssertingVH to catch these
bugs easier.
llvm-svn: 72364
assuming that the use of the value is in a block dominated by the
"normal" destination. LangRef.html and other documentation sources
don't explicitly guarantee this, but it seems to be assumed in
other places in LLVM at least.
This fixes an assertion failure on the included testcase, which
is derived from the Ada testsuite.
FixUsesBeforeDefs is a temporary measure which I'm looking to
replace with a more capable solution.
llvm-svn: 72266
instructions. It attempts to create high-level multi-operand GEPs,
though in cases where this isn't possible it falls back to casting
the pointer to i8* and emitting a GEP with that. Using GEP instructions
instead of ptrtoint+arithmetic+inttoptr helps pointer analyses that
don't use ScalarEvolution, such as BasicAliasAnalysis.
Also, make the AddrModeMatcher more aggressive in handling GEPs.
Previously it assumed that operand 0 of a GEP would require a register
in almost all cases. It now does extra checking and can do more
matching if operand 0 of the GEP is foldable. This fixes a problem
that was exposed by SCEVExpander using GEPs.
llvm-svn: 72093
and generalize it so that it can be used by IndVarSimplify. Implement the
base IndVarSimplify transformation code using IVUsers. This removes
TestOrigIVForWrap and associated code, as ScalarEvolution now has enough
builtin overflow detection and folding logic to handle all the same cases,
and more. Run "opt -iv-users -analyze -disable-output" on your favorite
loop for an example of what IVUsers does.
This lets IndVarSimplify eliminate IV casts and compute trip counts in
more cases. Also, this happens to finally fix the remaining testcases
in PR1301.
Now that IndVarSimplify is being more aggressive, it occasionally runs
into the problem where ScalarEvolutionExpander's code for avoiding
duplicate expansions makes it difficult to ensure that all expanded
instructions dominate all the instructions that will use them. As a
temporary measure, IndVarSimplify now uses a FixUsesBeforeDefs function
to fix up instructions inserted by SCEVExpander. Fortunately, this code
is contained, and can be easily removed once a more comprehensive
solution is available.
llvm-svn: 71535
These values aren't analyzable, so they don't care if more information
about the loop trip count can be had. Also, SCEVUnknown is used for
a PHI while the PHI itself is being analyzed, so it needs to be left
in the Scalars map. This fixes a variety of subtle issues.
llvm-svn: 71533
with the persistent insertion point, and change IndVars to make
use of it. This fixes a bug where IndVars was holding on to a
stale insertion point and forcing the SCEVExpander to continue to
use it.
This fixes PR4038.
llvm-svn: 69892
instructions in order to avoid inserting new ones. However, if
the cast instruction is the SCEVExpander's InsertPt, this
causes subsequently emitted instructions to be inserted near
the cast, and not at the location of the original insert point.
Fix this by adjusting the insert point in such cases.
This fixes PR4009.
llvm-svn: 69808
sext around sext(shorter IV + constant), using a
longer IV instead, when it can figure out the
add can't overflow. This comes up a lot in
subscripting; mainly affects 64 bit.
llvm-svn: 69123
trip counts that use signed comparisons. It's not obviously the best
approach for preserving trip count information, and at any rate there
isn't anything in the tree right now that makes use of that, so for
now always using zero-extensions is preferable.
llvm-svn: 65347
trip count value when the original loop iteration condition is
signed and the canonical induction variable won't undergo signed
overflow. This isn't required for correctness; it just preserves
more information about original loop iteration values.
Add a getTruncateOrSignExtend method to ScalarEvolution,
following getTruncateOrZeroExtend.
llvm-svn: 64918
are multiple IV's in a loop, some of them may under go signed
or unsigned wrapping even if the IV that's used in the loop
exit condition doesn't. Restrict sign-extension-elimination
and zero-extension-elimination to only those that operate on
the original loop-controlling IV.
llvm-svn: 64866