This restores support for selecting the SLLW/SRLW/SRAW instructions, which was
removed in rL348067 as the previous patterns made some unsafe assumptions.
Also see the related llvm-dev discussion
<http://lists.llvm.org/pipermail/llvm-dev/2018-December/128497.html>
Ultimately I didn't introduce a custom SelectionDAG node, but instead added a
DAG combine that inserts an AssertZext i5 on the shift amount for an i32
variable-length shift and also added an ANY_EXTEND DAG-combine which will
instead produce a SIGN_EXTEND for an i32 variable-length shift, increasing the
opportunity to safely select SLLW/SRLW/SRAW.
There are obviously different ways of addressing this (a number discussed in
the llvm-dev thread), so I'd welcome further feedback and comments.
Note that there are now some cases in
test/CodeGen/RISCV/rv64i-exhaustive-w-insts.ll where sraw/srlw/sllw is
selected even though sra/srl/sll could be used without any extra instructions.
Given both are semantically equivalent, there doesn't seem a good reason to
prefer one vs the other. Given that would require more logic to still select
sra/srl/sll in those cases, I've left it preferring the *w variants.
Differential Revision: https://reviews.llvm.org/D56264
llvm-svn: 350992
Adds support for the various RISC-V FMA instructions (fmadd, fmsub, fnmsub, fnmadd).
The criteria for choosing whether a fused add or subtract is used, as well as
whether the product is negated or not, is whether some of the arguments to the
llvm.fma.* intrinsic are negated or not. In the tests, extraneous fadd
instructions were added to avoid the negation being performed using a xor
trick, which prevented the proper FMA forms from being selected and thus
tested.
The FMA instruction patterns might seem incorrect (e.g., fnmadd: -rs1 * rs2 -
rs3), but they should be correct. The misleading names were inherited from
MIPS, where the negation happens after computing the sum.
The llvm.fmuladd.* intrinsics still do not generate RISC-V FMA instructions,
as that depends on TargetLowering::isFMAFasterthanFMulAndFAdd.
Some comments in the test files about what type of instructions are there
tested were updated, to better reflect the current content of those test
files.
Differential Revision: https://reviews.llvm.org/D54205
Patch by Luís Marques.
llvm-svn: 349023
As noted by Eli Friedman <https://reviews.llvm.org/D52977?id=168629#1315291>,
the RV64I shift patterns for SLLW/SRLW/SRAW make some incorrect assumptions.
SRAW assumed that (sext_inreg foo, i32) could only be produced when
sign-extended an i32. However, it can be produced by input such as:
define i64 @tricky_ashr(i64 %a, i64 %b) {
%1 = shl i64 %a, 32
%2 = ashr i64 %1, 32
%3 = ashr i64 %2, %b
ret i64 %3
}
It's important not to select sraw in the above case, because sraw only uses
bits lower 5 bits from the shift, while a shift of 32-63 would be valid.
Similarly, the patterns for srlw assumed (and foo, 0xffffffff) would only be
produced when zero-extending a value that was originally i32 in LLVM IR. This
is obviously incorrect.
This patch removes the SLLW/SRLW/SRAW shift patterns for the time being and
adds test cases that would demonstrate a miscompile if the incorrect patterns
were re-added.
llvm-svn: 348067
DAGTypeLegalizer::PromoteSetCCOperands currently prefers to zero-extend
operands when it is able to do so. For some targets this is more expensive
than a sign-extension, which is also a valid choice. Introduce the
isSExtCheaperThanZExt hook and use it in the new SExtOrZExtPromotedInteger
helper. On RISC-V, we prefer sign-extension for FromTy == MVT::i32 and ToTy ==
MVT::i64, as it can be performed using a single instruction.
Differential Revision: https://reviews.llvm.org/D52978
llvm-svn: 347977
As discussed in the RFC
<http://lists.llvm.org/pipermail/llvm-dev/2018-October/126690.html>, 64-bit
RISC-V has i64 as the only legal integer type. This patch introduces patterns
to support codegen of the new instructions
introduced in RV64I: addiw, addiw, subw, sllw, slliw, srlw, srliw, sraw,
sraiw, ld, sd.
Custom selection code is needed for srliw as SimplifyDemandedBits will remove
lower bits from the mask, meaning the obvious pattern won't work:
def : Pat<(sext_inreg (srl (and GPR:$rs1, 0xffffffff), uimm5:$shamt), i32),
(SRLIW GPR:$rs1, uimm5:$shamt)>;
This is sufficient to compile and execute all of the GCC torture suite for
RV64I other than those files using frameaddr or returnaddr intrinsics
(LegalizeDAG doesn't know how to promote the operands - a future patch
addresses this).
When promoting i32 sltu/sltiu operands, it would be more efficient to use
sign-extension rather than zero-extension for RV64. A future patch adds a hook
to allow this.
Differential Revision: https://reviews.llvm.org/D52977
llvm-svn: 347973
The objdump tests interfere with update_llc_test_checks.py and can't be
automatically update them. Put the sanitify check for compression on the
codegen codepath into a separate file, and expand it to also include tests of
integer materialisation. This would catch changes such as those triggered by
D41949.
llvm-svn: 330288
Summary:
This patch implements a tablegen-driven Instruction Compression
mechanism for generating RISCV compressed instructions
(C Extension) from the expanded instruction form.
This tablegen backend processes CompressPat declarations in a
td file and generates all the compile-time and runtime checks
required to validate the declarations, validate the input
operands and generate correct instructions.
The checks include validating register operands, immediate
operands, fixed register operands and fixed immediate operands.
Example:
class CompressPat<dag input, dag output> {
dag Input = input;
dag Output = output;
list<Predicate> Predicates = [];
}
let Predicates = [HasStdExtC] in {
def : CompressPat<(ADD GPRNoX0:$rs1, GPRNoX0:$rs1, GPRNoX0:$rs2),
(C_ADD GPRNoX0:$rs1, GPRNoX0:$rs2)>;
}
The result is an auto-generated header file
'RISCVGenCompressEmitter.inc' which exports two functions for
compressing/uncompressing MCInst instructions, plus
some helper functions:
bool compressInst(MCInst& OutInst, const MCInst &MI,
const MCSubtargetInfo &STI,
MCContext &Context);
bool uncompressInst(MCInst& OutInst, const MCInst &MI,
const MCRegisterInfo &MRI,
const MCSubtargetInfo &STI);
The clients that include this auto-generated header file and
invoke these functions can compress an instruction before emitting
it, in the target-specific ASM or ELF streamer, or can uncompress
an instruction before printing it, when the expanded instruction
format aliases is favored.
The following clients were added to implement compression\uncompression
for RISCV:
1) RISCVAsmParser::MatchAndEmitInstruction:
Inserted a call to compressInst() to compresses instructions
parsed by llvm-mc coming from an ASM input.
2) RISCVAsmPrinter::EmitInstruction:
Inserted a call to compressInst() to compress instructions that
were lowered from Machine Instructions (MachineInstr).
3) RVInstPrinter::printInst:
Inserted a call to uncompressInst() to print the expanded
version of the instruction instead of the compressed one (e.g,
add s0, s0, a5 instead of c.add s0, a5) when -riscv-no-aliases
is not passed.
This patch squashes D45119, D42780 and D41932. It was reviewed in smaller patches by
asb, efriedma, apazos and mgrang.
Reviewers: asb, efriedma, apazos, llvm-commits, sabuasal
Reviewed By: sabuasal
Subscribers: mgorny, eraman, asb, rbar, johnrusso, simoncook, jordy.potman.lists, apazos, niosHD, kito-cheng, shiva0217, zzheng
Differential Revision: https://reviews.llvm.org/D45385
llvm-svn: 329455
This patch switches the default for -riscv-no-aliases to false
and updates all affected MC and CodeGen tests. As recommended in
D41071, MC tests use the canonical instructions and the CodeGen
tests use the aliases.
Additionally, for the f and d instructions with rounding mode,
the tests for the aliased versions are moved and tightened such
that they can actually detect if alias emission is enabled.
(see D40902 for context)
Differential Revision: https://reviews.llvm.org/D41225
Patch by Mario Werner.
llvm-svn: 320797
As frame pointer elimination isn't implemented until a later patch and we make
extensive use of update_llc_test_checks.py, this changes touches a lot of the
RISC-V tests.
Differential Revision: https://reviews.llvm.org/D39849
llvm-svn: 320357
As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
Previous patches primarily ensured that codegen was possible for the standard
RISC-V instructions. However, there are a number of IR inputs that wouldn't be
appropriately lowered. This patch both adds test cases and supports lowering
for a number of these cases:
* Improved sext/zext/trunc support
* Support for setcc variants that don't map directly to RISC-V instructions
* Lowering mul, and hence support for external symbols
* addc, adde, subc, sube
* mulhs, srem, mulhu, urem, udiv, sdiv
* {srl,sra,shl}_parts
* brind
* br_jt
* bswap, ctlz, cttz, ctpop
* rotl, rotr
* BlockAddress operands
Differential Revision: https://reviews.llvm.org/D29938
llvm-svn: 318737
This adds the minimum necessary to support codegen for simple ALU operations
on RV32. Prolog and epilog insertion, support for memory operations etc etc
follow in future patches.
Leave guessInstructionProperties=1 until https://reviews.llvm.org/D37065 is
reviewed and lands.
Differential Revision: https://reviews.llvm.org/D29933
llvm-svn: 316188