This patch enables instructions that are destructive on their
destination- and first source operand, to be prefixed with a
MOVPRFX instruction.
This patch also adds a variety of tests:
- positive tests for all instructions and forms that accept a
movprfx for either or both predicated and unpredicated forms.
- negative tests for all instructions and forms that do not accept
an unpredicated or predicated movprfx.
- negative tests for the diagnostics that get emitted when a MOVPRFX
instruction is used incorrectly.
This is patch [2/2] in a series to add MOVPRFX instructions:
- Patch [1/2]: https://reviews.llvm.org/D49592
- Patch [2/2]: https://reviews.llvm.org/D49593
Reviewers: rengolin, SjoerdMeijer, samparker, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D49593
llvm-svn: 338261
This patch adds predicated and unpredicated MOVPRFX instructions, which
can be prepended to SVE instructions that are destructive on their first
source operand, to make them a constructive operation, e.g.
add z1.s, p0/m, z1.s, z2.s <=> z1 = z1 + z2
can be made constructive:
movprfx z0, z1
add z0.s, p0/m, z0.s, z2.s <=> z0 = z1 + z2
The predicated MOVPRFX instruction can additionally be used to zero
inactive elements, e.g.
movprfx z0.s, p0/z, z1.s
add z0.s, p0/m, z0.s, z2.s
Not all instructions can be prefixed with the MOVPRFX instruction
which is why this patch also adds a mechanism to validate prefixed
instructions. The exact rules when a MOVPRFX applies is detailed in
the SVE supplement of the Architectural Reference Manual.
This is patch [1/2] in a series to add MOVPRFX instructions:
- Patch [1/2]: https://reviews.llvm.org/D49592
- Patch [2/2]: https://reviews.llvm.org/D49593
Reviewers: rengolin, SjoerdMeijer, samparker, fhahn, javed.absar
Reviewed By: SjoerdMeijer
Differential Revision: https://reviews.llvm.org/D49592
llvm-svn: 338258
The machine verifier asserts with:
Assertion failed: (isMBB() && "Wrong MachineOperand accessor"), function getMBB, file ../include/llvm/CodeGen/MachineOperand.h, line 542.
It calls analyzeBranch which tries to call getMBB if the opcode is
JMP_1, but in this case we do:
JMP_1 @OUTLINED_FUNCTION
I believe we have to use TAILJMPd64 instead of JMP_1 since JMP_1 is used
with brtarget8.
Differential Revision: https://reviews.llvm.org/D49299
llvm-svn: 338237
Summary:
These instructions interact with hardware blocks outside the shader core,
and they can have "scalar" side effects even when EXEC = 0. We don't
want these scalar side effects to occur when all lanes want to skip
these instructions, so always add the execz skip branch instruction
for basic blocks that contain them.
Also ensure that we skip scalar stores / atomics, though we don't
code-gen those yet.
Reviewers: arsenm, rampitec
Subscribers: kzhuravl, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D48431
Change-Id: Ieaeb58352e2789ffd64745603c14970c60819d44
llvm-svn: 338235
Code in `CC_ARM_AAPCS_Custom_Aggregate()` is responsible for handling
homogeneous aggregates for `CC_ARM_AAPCS_VFP`. When an aggregate ends up
fully on stack, the function tries to pack all resulting items of the
aggregate as tightly as possible according to AAPCS.
Once the first item was laid out, the alignment used for consecutive
items was the size of one item. This logic went wrong for 128-bit
vectors because their alignment is normally only 64 bits, and so could
result in inserting unexpected padding between the first and second
element.
The patch fixes the problem by updating the alignment with the item size
only if this results in reducing it.
Differential Revision: https://reviews.llvm.org/D49720
llvm-svn: 338233
The WHILE instructions generate a predicate that is true while the
comparison of the first scalar operand (incremented for each predicate
element) with the second scalar operand is true and false thereafter.
WHILELE While incrementing signed scalar less than or equal to scalar
WHILELO While incrementing unsigned scalar lower than scalar
WHILELS While incrementing unsigned scalar lower than or same as scalar
WHILELT While incrementing signed scalar less than scalar
e.g.
whilele p0.s, x0, x1
generates predicate p0 (for 32bit elements) by incrementing
(signed) x0 and comparing that vector to splat(x1).
llvm-svn: 338211
The instructions added in this patch permit active elements within
a vector to be processed sequentially without unpacking the vector.
PFIRST Set the first active element to true.
PNEXT Find next active element in predicate.
CTERMEQ Compare and terminate loop when equal.
CTERMNE Compare and terminate loop when not equal.
llvm-svn: 338210
X86 normally requires immediates to be a signed 32-bit value which would exclude i64 0x80000000. But for add/sub we can negate the constant and use the opposite instruction.
llvm-svn: 338204
This patch adds PFALSE (unconditionally sets all elements of
the predicate to false) and PTEST (set the status flags for the
predicate).
llvm-svn: 338198
SelectionDAGBuilder widens v3i32/v3f32 arguments to
to v4i32/v4f32 which consume an additional register.
In addition to wasting argument space, this produces extra
instructions since now it appears the 4th vector component has
a meaningful value to most combines.
llvm-svn: 338197
This patch adds support for instructions that partition a predicate
based on data-dependent termination conditions in a loop.
BRKA Break after the first true condition
BRKAS Break after the first true condition, setting condition flags
BRKB Break before the first true condition
BRKBS Break before the first true condition, setting condition flags
BRKPA Break after the first true condition, propagating from the
previous partition
BRKPAS Break after the first true condition, propagating from the
previous partition, setting condition flags
BRKPB Break before the first true condition, propagating from the
previous partition
BRKPBS Break before the first true condition, propagating from the
previous partition, setting condition flags
BRKN Propagate break to next partition
BKRNS Propagate break to next partition, setting condition flags
llvm-svn: 338196
Summary:
Moved Explicit Locals pass to last.
Made that pass obligatory.
Made it convert from register to stack based instructions, and removed the registers.
Fixes to related code that was expecting register based instructions.
Added the correct testing flag to all tests, depending on what the
format they were expecting so far.
Translated one test to stack format as example: reg-stackify-stack.ll
tested:
llvm-lit -v `find test -name WebAssembly`
unittests/MC/*
Reviewers: dschuff, sunfish
Subscribers: sbc100, jgravelle-google, eraman, aheejin, llvm-commits
Differential Revision: https://reviews.llvm.org/D49160
llvm-svn: 338164
Fixed the ASAN failure from before in r338148, so recommiting.
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338160
There was a missing check for if a candidate list was entirely deleted. This
adds that check.
This fixes an asan failure caused by running test/CodeGen/AArch64/addsub_ext.ll
with the MachineOutliner enabled.
llvm-svn: 338148
This feature enables the fusion of such operations on Cortex A57 and Cortex
A72, as recommended in their Software Optimisation Guides, sections 4.14 and
4.11, respectively.
Differential revision: https://reviews.llvm.org/D49563
llvm-svn: 338147
Errors like the following are reported by:
https://urldefense.proofpoint.com/v2/url?u=http-3A__lab.llvm.org-3A8011_builders_llvm-2Dclang-2Dx86-5F64-2Dexpensive-2Dchecks-2Dwin_builds_11261&d=DwIBAg&c=5VD0RTtNlTh3ycd41b3MUw&r=DA8e1B5r073vIqRrFz7MRA&m=929oWPCf7Bf2qQnir4GBtowB8ZAlIRWsAdTfRkDaK-g&s=9k-wbEUVpUm474hhzsmAO29VXVvbxJPWD9RTgCD71fQ&e=
*** Bad machine code: Explicit definition marked as use ***
- function: cal_align1
- basic block: %bb.0 entry (0x47edd98)
- instruction: LDB $r3, $r2, 0
- operand 0: $r3
This is because RegState info was missing for ScratchReg inside
expandMEMCPY. This caused incomplete register usage information to
MachineInstr verifier which then would complain as there could be potential
code-gen issue if the complained MachineInstr is used in place where
register usage information matters even though the memcpy expanding is not
in such case as it happens at the last stage of IR optimization pipeline.
We should always specify those register usage information which compiler
couldn't deduct automatically whenever we add a hardware register manually.
Reported-by: Builder llvm-clang-x86_64-expensive-checks-win Build #11261
Signed-off-by: Jiong Wang <jiong.wang@netronome.com>
Reviewed-by: Yonghong Song <yhs@fb.com>
llvm-svn: 338134
This patch enables the MachineOutliner by default in AArch64 under -Oz.
The MachineOutliner offers around a 4.5% improvement on the current -Oz code
size improvements.
We have done work into improving the debuggability of outlined code, so that
users of -Oz won't be surprised by the optimization. We have also been executing
the LLVM test suite and common external tests such as the SPEC suites
continuously with no issue. The outliner has a low compile-time overhead of
roughly 1%. At this point, the outliner would be a really good addition to the
-Oz pass pipeline!
llvm-svn: 338133
R600 can't handle immediates for BFE, these will be eliminated later.
Fixes powr/pow regressions n r600 since r334817
Differential Revision: https://reviews.llvm.org/D49641
llvm-svn: 338127
This patch adds support for various integer reduction operations:
SADDV signed add reduction to scalar
UADDV unsigned add reduction to scalar
SMAXV signed maximum reduction to scalar
SMINV signed minimum reduction to scalar
UMAXV unsigned maximum reduction to scalar
UMINV unsigned minimum reduction to scalar
ANDV logical AND reduction to scalar
ORV logical OR reduction to scalar
EORV logical EOR reduction to scalar
The reduction is predicated, e.g.
smaxv s0, p0, z1.s
performs a signed maximum reduction on active elements in z1,
and stores the (signed max value) result in s0.
llvm-svn: 338126
This patch adds support for various floating-point
reduction operations:
FADDA strictly-ordered add reduction, accumulating in scalar
FADDV recursive add reduction to scalar
FMAXV recursive max reduction to scalar
FMINV recursive min reduction to scalar
FMAXNMV recursive max number reduction to scalar
FMINNMV recursive min number reduction to scalar
The reduction is predicated, e.g.
fadda d0, p0, d0, z1.d
performs the add-reduction in strict order on active elements
in z1, accumulating into d0.
faddv d0, p0, z1.d
performs the add-reduction (not in strict order)
on active elements in z1, storing the result in d0.
llvm-svn: 338123
This patch adds support for transcendental acceleration
instructions 'FEXPA' (exponential accelerator) and 'FTSSEL'
(trigonometric select coefficient).
llvm-svn: 338121
Not sure why they were being explicitly excluded, but I believe all the math inside the if works. I changed the absolute value to be uint64_t instead of int64_t so INT64_MIN+1 wouldn't be signed wrap.
llvm-svn: 338101
Summary:
This is the pattern you get from the loop vectorizer for something like this
int16_t A[1024];
int16_t B[1024];
int32_t C[512];
void pmaddwd() {
for (int i = 0; i != 512; ++i)
C[i] = (A[2*i]*B[2*i]) + (A[2*i+1]*B[2*i+1]);
}
In this case we will have (add (mul (build_vector), (build_vector)), (mul (build_vector), (build_vector))). This is different than the pattern we currently match which has the build_vectors between an add and a single multiply. I'm not sure what C code would get you that pattern.
Reviewers: RKSimon, spatel, zvi
Reviewed By: zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D49636
llvm-svn: 338097
If this happens the operands aren't updated and the existing node is returned. Make sure we pass this existing node up to the DAG combiner so that a proper replacement happens. Otherwise we get stuck in an infinite loop with an unoptimized node.
llvm-svn: 338090
Scale the offset of VGPR spills by the wave size when it cannot fit in the
12-bit offset immediate field and so is added to the soffset SGPR. This
accounts for hardware swizzling of scratch memory.
Differential Revision: https://reviews.llvm.org/D49448
llvm-svn: 338060
- Save/restore only registers that are used.
This includes Callee saved registers and Caller saved registers
(arguments and temporaries) for integer and FP registers.
- If there is a call in the interrupt handler, save/restore all
Caller saved registers (arguments and temporaries) and all FP registers.
- Emit special return instructions depending on "interrupt"
attribute type.
Based on initial patch by Zhaoshi Zheng.
Reviewers: asb
Reviewed By: asb
Subscribers: rkruppe, the_o, MartinMosbeck, brucehoult, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, zzheng, edward-jones, mgrang, rogfer01, llvm-commits
Differential Revision: https://reviews.llvm.org/D48411
llvm-svn: 338047
Summary:
NVPTX target dos not use register-based frame information. Instead it
relies on the artificial local_depot that is used instead of the frame
and the data for variables must be emitted relatively to this
local_depot.
Reviewers: tra, jlebar, echristo
Subscribers: jholewinski, aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D45963
llvm-svn: 338039
- Some of the v8.3 pointer authentication instruction inhabit the Hint space
- These instructions can be assembled to hint instructions which act as NOP instructions prior to v8.3
- This patch permits using the hint instructions for all v8a targets
- Also, correct the RETA{A,B} instructions to match the instruction attributes of RET (set isTerminator and isBarrier)
Differential Revision: https://reviews.llvm.org/D49786
llvm-svn: 338029
Override getTypeForExtReturn so that functions returning
an i32 typed value have it sign extended on MIPS64.
Also provide patterns to get rid of unneeded sign extensions
for arithmetic instructions which implicitly sign extend
their results.
Differential Revision: https://reviews.llvm.org/D48374
llvm-svn: 338019
a helper function with a nice overview comment. NFC.
This is a preperatory refactoring to implementing another component of
mitigation here that was descibed in the design document but hadn't been
implemented yet.
llvm-svn: 338016
This adds MC support for the crypto instructions that were made optional
extensions in Armv8.2-A (AArch64 only).
Differential Revision: https://reviews.llvm.org/D49370
llvm-svn: 338010
I'm not sure if this was trying to avoid optimizing the new nodes further or what. Or maybe to prevent a cycle if something tried to reform the multiply? But I don't think its a reliable way to do that. If the user of the expanded multiply is visited by the DAGCombiner after this conversion happens, the DAGCombiner will check its operands, see that they haven't been visited by the DAGCombiner before and it will then add the first node to the worklist. This process will repeat until all the new nodes are visited.
So this seems like an unreliable prevention at best. So this patch just returns the new nodes like any other combine. If this starts causing problems we can try to add target specific nodes or something to more directly prevent optimizations.
Now that we handle the combine normally, we can combine any negates the mul expansion creates into their users since those will be visited now.
llvm-svn: 338007
These calls were making sure some newly created nodes were added to worklist, but the DAGCombiner has internal support for ensuring it has visited all nodes. Any time it visits a node it ensures the operands have been queued to be visited as well. This means if we only need to return the last new node. The DAGCombiner will take care of adding its inputs thus walking backwards through all the new nodes.
llvm-svn: 337996