An empty history entry can happen by entering the expression evaluator an immediately hitting enter:
```
$ lldb
(lldb) e
Enter expressions, then terminate with an empty line to evaluate:
1: <hit enter>
```
The next time the user enters the expression evaluator, if they hit the up arrow to load the previous expression, lldb crashes. This patch treats empty history sessions as a single expression of zero length, instead of an empty list of expressions.
Fixes http://llvm.org/PR49845.
Differential Revision: https://reviews.llvm.org/D100048
When referencing `NSObject`, it's enough to import `objc/NSObject.h`. Importing `Foundation` is unnecessary in these cases.
Differential Revision: https://reviews.llvm.org/D99867
The test uses debug info from one binary to debug a different one. This
does not work on macos, and its pure luck that it works elsewhere (the
variable that it inspects happens to have the same address in both).
The purpose of this test is to verify that lldb has not overwritten the
target executable. That can be more easily achieved by checking the exit
code of the binary, so change the test to do that.
Also remove the llgs_test decorator, as it's preventing the test from
running on macos. All the test needs is the platform functionality of
lldb-server, which is available everywhere.
This implements the interactive trace start and stop methods.
This diff ended up being much larger than I anticipated because, by doing it, I found that I had implemented in the beginning many things in a non optimal way. In any case, the code is much better now.
There's a lot of boilerplate code due to the gdb-remote protocol, but the main changes are:
- New tracing packets: jLLDBTraceStop, jLLDBTraceStart, jLLDBTraceGetBinaryData. The gdb-remote packet definitions are quite comprehensive.
- Implementation of the "process trace start|stop" and "thread trace start|stop" commands.
- Implementaiton of an API in Trace.h to interact with live traces.
- Created an IntelPTDecoder for live threads, that use the debugger's stop id as checkpoint for its internal cache.
- Added a functionality to stop the process in case "process tracing" is enabled and a new thread can't traced.
- Added tests
I have some ideas to unify the code paths for post mortem and live threads, but I'll do that in another diff.
Differential Revision: https://reviews.llvm.org/D91679
This patch adds a test case to test AArch64 dynamic register sets.
This tests for the availability of certain register sets and query
their registers accordingly.
Reviewed By: labath, DavidSpickett
Differential Revision: https://reviews.llvm.org/D96463
This got removed in 68bb51acd5 and this enabled
the test on macOS (where it just causes lldb-server to crash). Re-adding the
decorator to get the tests passing again.
Fix the test to account for recent test infrastructure changes, and make
it run locally to increase the chances of it continuing to work in the
future.
The functionality is not posix specific. Also force the usage of the
gdb-remote process plugin in the gdb platform class.
This is not sufficient to make TestPlatformConnect pass on windows (it
seems it suffers from module loading issues, unrelated to this test),
but it at least makes it shut down correctly, so I change the skip to an
xfail.
This patch introduces a new interpreter setting to prevent LLDB from
re-executing the previous command when passing an empty command.
This can be very useful when performing actions that requires a long
time to complete.
To preserve the original behaviour, the setting defaults to `true`.
rdar://74983516
Differential Revision: https://reviews.llvm.org/D97999
Signed-off-by: Med Ismail Bennani <medismail.bennani@gmail.com>
We have a plugin.process.gdb-remote.packet-timeout setting, which can be
used to control how long the lldb client is willing to wait before
declaring the server side dead. Our test suite makes use of this
feature, and sets the setting value fairly high, as the low default
value can cause flaky tests, particularly on slower bots.
After fixing TestPlatformConnect (one of the few tests exercising the
remote platform capabilities of lldb) in 4b284b9ca, it immediately
started being flaky on the arm bots. It turns out this is because the
packet-timeout setting is not being applied to platform connections.
This patch makes the platform connections also respect the value of this
setting. It also adds a test which checks that the timeout value is
being honored.
Differential Revision: https://reviews.llvm.org/D97769
Some implementations of the DeepCopy function called the copy constructor that copied m_parent member instead of setting a new parent. Others just leaved the base class's members (m_parent, m_callback, m_was_set) empty.
One more problem is that not all classes override this function, e.g. OptionValueArgs::DeepCopy produces OptionValueArray instance, and Target[Process/Thread]ValueProperty::DeepCopy produces OptionValueProperty. This makes downcasting via static_cast invalid.
The patch implements idiom "virtual constructor" to fix these issues.
Add a test that checks DeepCopy for correct copying/setting all data members of the base class.
Differential Revision: https://reviews.llvm.org/D96952
This reapplies 7df4eaaa93/D96202, which was reverted due to issues on
windows. These were caused by problems in the computation of the liblldb
directory, which was fixed by D96779.
The original commit message was:
Our test configuration logic assumes that the tests can be run either
with debugserver or with lldb-server. This is not entirely correct,
since lldb server has two "personalities" (platform server and debug
server) and debugserver is only a replacement for the latter.
A consequence of this is that it's not possible to test the platform
behavior of lldb-server on macos, as it is not possible to get a hold of
the lldb-server binary.
One solution to that would be to duplicate the server configuration
logic to be able to specify both executables. However, that seems
excessively redundant.
A well-behaved lldb should be able to find the debug server on its own,
and testing lldb with a different (lldb-|debug)server does not seem very
useful (even in the out-of-tree debugserver setup, we copy the server
into the build tree to make it appear "real").
Therefore, this patch deletes the configuration altogether and changes
the low-level server retrieval functions to be able to both lldb-server
and debugserver paths. They do this by consulting the "support
executable" directory of the lldb under test.
Differential Revision: https://reviews.llvm.org/D96202
Right now when running `expr --top-level -- void foo() {}`, LLDB just prints a cryptic
`error: Couldn't find $__lldb_expr() in the module` error. The reason for that is
that if we don't have a running process, we try to set our execution policy to always use the
IR interpreter (ExecutionPolicyNever) which works even without a process. However
that code didn't consider the special ExecutionPolicyTopLevel which we use for
top-level expressions. By changing the execution policy to ExecutionPolicyNever,
LLDB thinks we're actually trying to interpret a normal expression inside our
`$__lldb_expr` function and then fails when looking for it.
This just adds an exception for top-level expressions to that code and a bunch of tests.
Reviewed By: shafik
Differential Revision: https://reviews.llvm.org/D91723
Our test configuration logic assumes that the tests can be run either
with debugserver or with lldb-server. This is not entirely correct,
since lldb server has two "personalities" (platform server and debug
server) and debugserver is only a replacement for the latter.
A consequence of this is that it's not possible to test the platform
behavior of lldb-server on macos, as it is not possible to get a hold of
the lldb-server binary.
One solution to that would be to duplicate the server configuration
logic to be able to specify both executables. However, that seems
excessively redundant.
A well-behaved lldb should be able to find the debug server on its own,
and testing lldb with a different (lldb-|debug)server does not seem very
useful (even in the out-of-tree debugserver setup, we copy the server
into the build tree to make it appear "real").
Therefore, this patch deletes the configuration altogether and changes
the low-level server retrieval functions to be able to both lldb-server
and debugserver paths. They do this by consulting the "support
executable" directory of the lldb under test.
Differential Revision: https://reviews.llvm.org/D96202
Although it is located under tools/lldb-server, this test is very
different that other lldb-server tests. The most important distinction
is that it does not test lldb-server directly, but rather interacts with
it through the lldb client. It also tests the relevant client
functionality (the platform connect command, which is even admitted in
the test name). The fact that this test is structured as a lldb-server
test means it cannot access most of the goodies available to the
"normal" lldb tests (the runCmd function, which it reimplements; the
run_break_set_by_symbol utility function; etc.).
This patch makes it a full-fledged lldb this, and rewrites the relevant
bits to make use of the standard features. I also move the test into the
"commands" subtree to better reflect its new status.
This test passes on arm64 (Apple Silicon). I assume that "aarch64" still
ensures this gets skipped on Linux. I don't have access to such and
environment so I'll have to rely on the bot complaining.
Convert `assertTrue(a == b)` to `assertEqual(a, b)` to produce better failure messages.
These were mostly done via regex search & replace, with some manual fixes.
Differential Revision: https://reviews.llvm.org/D95813
Identical to previous commits that just add a standard library template to the
supported template list and test it. Adding this rather obscure class to the
template list is mostly caused by the std::deque test unexpectedly referencing
this type when testing against newer libc++ versions on macOS.
Fixes TestQueueFromStdModule and TestQueueFromStdModule on macOS.
Fixes rdar://73213589
Currently when LLDB has enough data in the debug information to import the `std` module,
it will just try to import it. However when debugging libraries where the sources aren't
available anymore, importing the module will generate a confusing diagnostic that
the module couldn't be built.
For the fallback mode (where we retry failed expressions with the loaded module), this
will cause the second expression to fail with a module built error instead of the
actual parsing issue in the user expression.
This patch adds checks that ensures that we at least have any source files in the found
include paths before we try to import the module. This prevents the module from being
loaded in the situation described above which means we don't emit the bogus 'can't
import module' diagnostic and also don't waste any time retrying the expression in the
fallback mode.
For the unit tests I did some refactoring as they now require a VFS with the files in it
and not just the paths. The Python test just builds a binary with a fake C++ module,
then deletes the module before debugging.
Fixes rdar://73264458
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D95096
This test is flakey on Windows and on failure it hangs causing the test suite to fail and future builds (on the buildbot, especially) to fail because they cannot re-write the files that are currently in use
This patch adds a new test case which depends on AArch64 SVE support and
dynamic resize capability enabled. It created two seperate threads which
have different values of sve registers and SVE vector granule at various
points during execution.
We test that LLDB is doing the size and offset updates properly for all
of the threads including the main thread and when we VG is updated using
prctl call or by 'register write vg' command the appropriate changes are
also update in register infos.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D82866
When a command option does not have a short version
(e.g. -f for --file), we use an arbitrary value in the
short_option field to mark it as invalid.
(though this value is unqiue to be used later for other
things)
We check that this short option is valid to print using
llvm::isPrint. This implicitly casts our int to char,
meaning we check the last char of any short_option value.
Since the arbitrary value we chose for these options is
some shortened hex version of the name, this returned true
even for invalid values.
Since llvm::isPrint returns true we later call std::islower
and/or std::isupper on the short_option value. (the int)
Calling these functions with something that cannot be validly
converted to unsigned char is undefined. Somehow we got/get
away with this but for me compiling with g++-9 I got a crash
for "help memory read".
The other command that uses this is "target variable" but that
didn't crash for unknown reasons.
Checking that short_option can fit into an unsigned char before
we call llvm::isPrint means we will not attempt to call islower/upper
on these options since we have no reason to print them.
This also fixes bogus short options being shown for "memory read"
and target variable.
For "target variable", before:
-e <filename> ( --file <filename> )
-b <filename> ( --shlib <filename> )
After:
--file <filename>
--shlib <filename>
(note that the bogus short options are just the bottom byte of our
arbitrary short_option value)
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D94917
Remove the stale LLDB-Info.plist which was only used by TestHelp.py. The
latter would try to parse the version number from the plist and use that
to verify the version in the help output. Of course this never matched
so it would fall back to matching any arbitrary version.
This patch does *not* change the real LLDB-Info.plist.in file which is
used for the LLDB Framework.
Add stN aliases for the FPU (stmmN) registers on MacOSX. This should
improve compatibility between MacOSX and other platforms, and partially
fix x86*-fp-write tests without having to duplicate them. Note that
the tests are currently still broken due to ftag incompatibility.
Differential Revision: https://reviews.llvm.org/D91847
Nearly all of our lldb-server tests have two flavours (lldb-server and
debugserver). Each of them is tagged with an appropriate decorator, and
each of them starts with a call to a matching "init" method. The init
calls are mandatory, and it's not possible to meaningfully combine them
with a different decorator.
This patch leverages the existing decorators to also tag the tests with
the appropriate debug server tag, similar to how we do with debug info
flavours. This allows us to make the "init" calls from inside the common
setUp method.
Fix the POSIX-DYLD plugin to update the cached executable path after
attaching. Previously, the path was cached in DYLDRendezvous
constructor and not updated afterwards. This meant that if LLDB was
attaching to a process (e.g. via connecting to lldb-server), the code
stored the empty path before DidAttach() resolved it. The fix updates
the cached path in DidAttach().
This fixes a new instance of https://llvm.org/pr17880
Differential Revision: https://reviews.llvm.org/D92264
Right now we have one large AST for all types in LLDB. All ODR violations in
types we reconstruct are resolved by just letting the ASTImporter handle the
conflicts (either by merging types or somehow trying to introduce a duplicated
declaration in the AST). This works ok for the normal types we build from debug
information as most of them are just simple CXXRecordDecls or empty template
declarations.
However, with a loaded `std` C++ module we have alternative versions of pretty
much all declarations in the `std` namespace that are much more fleshed out than
the debug information declarations. They have all the information that is lost
when converting to DWARF, such as default arguments, template default arguments,
the actual uninstantiated template declarations and so on.
When we merge these C++ module types into the big scratch AST (that might
already contain debug information types) we give the ASTImporter the tricky task
of somehow creating a consistent AST out of all these declarations. Usually this
ends in a messy AST that contains a mostly broken mix of both module and debug
info declarations. The ASTImporter in LLDB is also importing types with the
MinimalImport setting, which usually means the only information we have when
merging two types is often just the name of the declaration and the information
that it contains some child declarations. This makes it pretty much impossible
to even implement a better merging logic (as the names of C++ module
declarations and debug info declarations are identical).
This patch works around this whole merging problem by separating C++ module
types from debug information types. This is done by splitting up the single
scratch AST into two: One default AST for debug information and a dedicated AST
for C++ module types.
The C++ module AST is implemented as a 'specialised AST' that lives within the
default ScratchTypeSystemClang. When we select the scratch AST we can explicitly
request that we want such a isolated sub-AST of the scratch AST. I kept the
infrastructure more general as we probably can use the same mechanism for other
features that introduce conflicting types (such as programs that are compiled
with a custom -wchar-size= option).
There are just two places where we explicitly have request the C++ module AST:
When we export persistent declarations (`$mytype`) and when we create our
persistent result variable (`$0`, `$1`, ...). There are a few formatters that
were previously assuming that there is only one scratch AST which I cleaned up
in a preparation revision here (D92757).
Reviewed By: aprantl
Differential Revision: https://reviews.llvm.org/D92759
By now LLDB can import the 'std' C++ module to improve expression evaluation,
but there are still a few problems to solve before we can do this by default.
One is that importing the C++ module is slightly slower than normal expression
evaluation (mostly because the disk access and loading the initial lookup data
is quite slow in comparison to the barebone Clang setup the rest of the LLDB
expression evaluator is usually doing). Another problem is that some complicated
types in the standard library aren't fully supported yet by the ASTImporter, so
we end up types that fail to import (which usually appears to the user as if the
type is empty or there is just no result variable).
To still allow people to adopt this mode in their daily debugging, this patch
adds a setting that allows LLDB to automatically retry failed expression with a
loaded C++ module. All success expressions will behave exactly as they would do
before this patch. Failed expressions get a another parse attempt if we find a
usable C++ module in the current execution context. This way we shouldn't have
any performance/parsing regressions in normal debugging workflows, while the
debugging workflows involving STL containers benefit from the C++ module type
info.
This setting is off by default for now with the intention to enable it by
default on macOS soon-ish.
The implementation is mostly just extracting the existing parse logic into its
own function and then calling the parse function again if the first evaluation
failed and we have a C++ module to retry the parsing with.
Reviewed By: shafik, JDevlieghere, aprantl
Differential Revision: https://reviews.llvm.org/D92784
Force gdb-remote plugin when attaching using the derivatives
of PlatformPOSIX class. This is consistent with the behavior
for launching processes (via DebugProcess() method) and guarantees
consistent plugin choice on FreeBSD.
Differential Revision: https://reviews.llvm.org/D92667
Extract remote debugging logic from PlatformMacOSX and move it into
PlatformRemoteMacOSX so it can benefit from all the logic necessary for
remote debugging.
Until now, remote macOS debugging was treated almost identical to local
macOS debugging. By moving in into its own class, we can have it inherit
from PlatformRemoteDarwinDevice and all the functionality it provides,
such as looking at the correct DeviceSupport directory.
rdar://68167374
Differential revision: https://reviews.llvm.org/D92452
The test case isn't using the AST matchers for all checks as there doesn't seem to be support for
matching TemplateTypeParmDecl default arguments. Otherwise this is simply importing the
default arguments.
Also updates several LLDB tests that now as intended omit the default template
arguments of several std templates.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D92103
Restore Linux-alike regset names for AVX/MPX registers
as TestLldbGdbServer seems to depend on them. At the same time, fix
TestRegisters to be aware that they are not available on FreeBSD
and NetBSD, at least until we figure out a better way of reporting
unsupported register sets.
Differential Revision: https://reviews.llvm.org/D91923
Translate between abridged and full ftag values in order to expose
the latter in the gdb-remote protocol while the former are used by
FXSAVE/XSAVE... This matches the gdb behavior.
The Shell/Register tests now rely on the new behavior, and therefore
are run on non-Darwin systems only. The Python (API) test relies
on the legacy behavior, and is run on Darwin only.
Differential Revision: https://reviews.llvm.org/D91504
We can handle all the types in the expression evaluator now without casting.
On Linux, we have a system header declaration that is still causing issues, so
I'm skipping the test there until I get around to fix this.