This adds LLVM's 3 main cast instructions (inttoptr, ptrtoint, bitcast) to the
IRTranslator. The first two are direct translations (with 2 MachineInstr types
each). Since LLT discards information, a bitcast might become trivial and we
emit a COPY in those cases instead.
llvm-svn: 276690
This should be all the low-level instruction selection needs to determine how
to implement an operation, with the remaining context taken from the opcode
(e.g. G_ADD vs G_FADD) or other flags not based on type (e.g. fast-math).
llvm-svn: 276158
MachineInstr.h and MachineInstrBuilder.h are very popular headers,
widely included across all LLVM backends. It turns out that there only a
handful of TUs that actually care about DI operands on MachineInstrs.
After this change, touching DebugInfoMetadata.h and rebuilding llc only
needs 112 actions instead of 542.
llvm-svn: 266351
For now, we put the register bank in the Class field since a register
may only have one of those at a given time. The downside of that
representation is that if a register class and a register bank have the
same name, we will not be able to distinguish them.
llvm-svn: 265796
MachineFunctionProperties represents a set of properties that a MachineFunction
can have at particular points in time. Existing examples of this idea are
MachineRegisterInfo::isSSA() and MachineRegisterInfo::tracksLiveness() which
will eventually be switched to use this mechanism.
This change introduces the AllVRegsAllocated property; i.e. the property that
all virtual registers have been allocated and there are no VReg operands
left.
With this mechanism, passes can declare that they require a particular property
to be set, or that they set or clear properties by implementing e.g.
MachineFunctionPass::getRequiredProperties(). The MachineFunctionPass base class
verifies that the requirements are met, and handles the setting and clearing
based on the delcarations. Passes can also directly query and update the current
properties of the MF if they want to have conditional behavior.
This change annotates the target-independent post-regalloc passes; future
changes will also annotate target-specific ones.
Reviewers: qcolombet, hfinkel
Differential Revision: http://reviews.llvm.org/D18421
llvm-svn: 264593
Before this change, we would get the type definition in the middle
of the instruction.
E.g., %0(48) = G_ADD %struct_alias = type { i32, i16 } %edi, %edi
Now, we have just the expected type name:
%0(48) = G_ADD %struct_alias %edi, %edi
llvm-svn: 262885
(This is the second attempt to submit this patch. The first caused two assertion
failures and was reverted. See https://llvm.org/bugs/show_bug.cgi?id=25687)
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254377
and the follow-up r254356: "Fix a bug in MachineBlockPlacement that may cause assertion failure during BranchProbability construction."
Asserts were firing in Chromium builds. See PR25687.
llvm-svn: 254366
The patch in http://reviews.llvm.org/D13745 is broken into four parts:
1. New interfaces without functional changes (http://reviews.llvm.org/D13908).
2. Use new interfaces in SelectionDAG, while in other passes treat probabilities
as weights (http://reviews.llvm.org/D14361).
3. Use new interfaces in all other passes.
4. Remove old interfaces.
This patch is 3+4 above. In this patch, MBB won't provide weight-based
interfaces any more, which are totally replaced by probability-based ones.
The interface addSuccessor() is redesigned so that the default probability is
unknown. We allow unknown probabilities but don't allow using it together
with known probabilities in successor list. That is to say, we either have a
list of successors with all known probabilities, or all unknown
probabilities. In the latter case, we assume each successor has 1/N
probability where N is the number of successors. An assertion checks if the
user is attempting to add a successor with the disallowed mixed use as stated
above. This can help us catch many misuses.
All uses of weight-based interfaces are now updated to use probability-based
ones.
Differential revision: http://reviews.llvm.org/D14973
llvm-svn: 254348
With subregister liveness enabled we can detect the case where only
parts of a register are live in, this is expressed as a 32bit lanemask.
The current code only keeps registers in the live-in list and therefore
enumerated all subregisters affected by the lanemask. This turned out to
be too conservative as the subregister may also cover additional parts
of the lanemask which are not live. Expressing a given lanemask by
enumerating a minimum set of subregisters is computationally expensive
so the best solution is to simply change the live-in list to store the
lanemasks as well. This will reduce memory usage for targets using
subregister liveness and slightly increase it for other targets
Differential Revision: http://reviews.llvm.org/D12442
llvm-svn: 247171
We can now run 32-bit programs with empty catch bodies. The next step
is to change PEI so that we get funclet prologues and epilogues.
llvm-svn: 246235
This commit allows the MIR printer to print the MCSymbol machine operands.
Unfortunately they can't be parsed at this time. I will create a bug that will
track the fact that the MCSymbol operands can't be parsed yet.
llvm-svn: 245737
This commit modifies the serialization syntax so that the global IR values in
machine memory operands use the global value '@<name>' syntax instead of the
current '%ir.<name>' syntax.
The unnamed global IR values are handled by this commit as well, as the
existing global value parsing method can parse the unnamed globals already.
llvm-svn: 245527
The global IR values in machine memory operands should use the global value
'@<name>' syntax instead of the current '%ir.<name>' syntax.
However, the global value call entry pseudo source values use the global value
syntax already. Therefore, the syntax for the call entry pseudo source values
has to be changed so that the global values and call entry global value PSVs
can be parsed without ambiguities.
llvm-svn: 245526
Machine memory operands can contain pointer values that are constants, and
the 'getLocalSlot' method requires non-constant values.
The constant pointer values will have to be serialized in a different patch.
llvm-svn: 245523
This commit serializes the machine instruction's register operand ties.
The ties are printed out only when the instructon has register ties that are
different from the ties that are specified in the instruction's description.
llvm-svn: 245482
The defined registers are already serialized - they are represented by placing
them before the '=' in a machine instruction. However, certain instructions like
INLINEASM can have defined register operands after the '=', so this commit
introduces the 'def' register flag for such operands.
llvm-svn: 245480
This commit adds support for bit mask target flag serialization to the MIR
printer and the MIR parser. It also adds support for the machine operand's
target flag serialization to the AArch64 target.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 245383
This commit modifies the way the machine basic blocks are serialized - now the
machine basic blocks are serialized using a custom syntax instead of relying on
YAML primitives. Instead of using YAML mappings to represent the individual
machine basic blocks in a machine function's body, the new syntax uses a single
YAML block scalar which contains all of the machine basic blocks and
instructions for that function.
This is an example of a function's body that uses the old syntax:
body:
- id: 0
name: entry
instructions:
- '%eax = MOV32r0 implicit-def %eflags'
- 'RETQ %eax'
...
The same body is now written like this:
body: |
bb.0.entry:
%eax = MOV32r0 implicit-def %eflags
RETQ %eax
...
This syntax change is motivated by the fact that the bundled machine
instructions didn't map that well to the old syntax which was using a single
YAML sequence to store all of the machine instructions in a block. The bundled
machine instructions internally use flags like BundledPred and BundledSucc to
determine the bundles, and serializing them as MI flags using the old syntax
would have had a negative impact on the readability and the ease of editing
for MIR files. The new syntax allows me to serialize the bundled machine
instructions using a block construct without relying on the internal flags,
for example:
BUNDLE implicit-def dead %itstate, implicit-def %s1 ... {
t2IT 1, 24, implicit-def %itstate
%s1 = VMOVS killed %s0, 1, killed %cpsr, implicit killed %itstate
}
This commit also converts the MIR testcases to the new syntax. I developed
a script that can convert from the old syntax to the new one. I will post the
script on the llvm-commits mailing list in the thread for this commit.
llvm-svn: 244982
This commit serializes the UsedPhysRegMask register mask from the machine
register information class. The mask is serialized as an inverted
'calleeSavedRegisters' mask to keep the output minimal.
This commit also allows the MIR parser to infer this mask from the register
mask operands if the machine function doesn't specify it.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 244548
The block address machine operands can reference IR blocks in other functions.
This commit fixes a bug where the references to unnamed IR blocks in other
functions weren't serialized correctly.
llvm-svn: 244299
This commit implements the initial serialization of the machine operand target
flags. It extends the 'TargetInstrInfo' class to add two new methods that help
to provide text based serialization for the target flags.
This commit can serialize only the X86 target flags, and the target flags for
the other targets will be serialized in the follow-up commits.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 244185
This commit serializes the offset for the following operands: target index,
global address, external symbol, constant pool index, and block address.
llvm-svn: 244157
This commit removes an outdated TODO comment and a corresponding assertion
which asserts that the mir printer can't the print machine basic blocks that
aren't sequentially numbered.
This comment and assertion were correct when I was working on the patch which
serialized the machine basic blocks, but then I decided to add an 'ID'
attribute to the machine basic block's YAML mapping based on the patch review.
This comment and assertion then became invalid as with the 'ID' attribute we
can serialize the non sequential machine basic blocks and their references
without any problems.
llvm-svn: 243447
This commit serializes the references from the machine basic blocks to the
unnamed basic blocks.
This commit adds a new attribute to the machine basic block's YAML mapping
called 'ir-block'. This attribute contains the actual reference to the
basic block.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 243340
This commit serializes the callee saved information from the class
'MachineFrameInfo'. This commit extends the YAML mappings for the fixed and
the ordinary stack objects and adds an optional 'callee-saved-register'
attribute. This attribute is used to serialize the callee save information.
llvm-svn: 243173
This commit serializes the virtual register allocations hints of type 0.
These hints specify the preferred physical registers for allocations.
llvm-svn: 243156
This commit begins serialization of the CFI index machine operands by
serializing one kind of CFI instruction - the .cfi_def_cfa_offset instruction.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 242845
This commit implements the initial serialization of machine constant pools and
the constant pool index machine operands. The constant pool is serialized using
a YAML sequence of YAML mappings that represent the constant values.
The target-specific constant pool items aren't serialized by this commit.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 242707
The jump table info is serialized using a YAML mapping that contains its kind
and a YAML sequence of jump table entries. A jump table entry is a YAML mapping
that has an ID and an inline YAML sequence of machine basic block references.
The testcase 'CodeGen/MIR/X86/jump-table-info.mir' doesn't have any instructions
because one of them contains a jump table index operand. The jump table index
operands will be serialized in a follow up patch, and the appropriate
instructions will be added to this testcase.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 242357
This commit serializes the references to the named LLVM alloca instructions from
the stack objects in the machine frame info. This commit adds a field 'Name' to
the struct 'yaml::MachineStackObject'. This new field is used to store the name
of the alloca instruction when the alloca is present and when it has a name.
llvm-svn: 242339
This commit moves the function 'printReg' towards the start of the file so that
it can be used by the conversion methods in MIRPrinter and not just the printing
methods in MIPrinter.
llvm-svn: 242203
This commit serializes the fixed stack objects, including fixed spill slots.
The fixed stack objects are serialized using a YAML sequence of YAML inline
mappings. Each mapping has the object's ID, type, size, offset, and alignment.
The objects that aren't spill slots also serialize the isImmutable and isAliased
flags.
The fixed stack objects are a part of the machine function's YAML mapping.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 242045
This commit implements the initial serialization of stack objects from the
MachineFrameInfo class. It can only serialize the ordinary stack objects
(including ordinary spill slots), but it doesn't serialize variable sized or
fixed stack objects yet.
The stack objects are serialized using a YAML sequence of YAML inline mappings.
Each mapping has the object's ID, type, size, offset and alignment. The stack
objects are a part of machine function's YAML mapping.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 241922
The virtual registers are serialized using a YAML sequence of YAML inline
mappings. Each mapping has the id of the virtual register and the register
class.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10981
llvm-svn: 241868
This commit serializes the 13 scalar boolean and integer attributes from the
MachineFrameInfo class: IsFrameAddressTaken, IsReturnAddressTaken, HasStackMap,
HasPatchPoint, StackSize, OffsetAdjustment, MaxAlignment, AdjustsStack,
HasCalls, MaxCallFrameSize, HasOpaqueSPAdjustment, HasVAStart, and
HasMustTailInVarArgFunc. These attributes are serialized as part
of the frameInfo YAML mapping, which itself is a part of the machine function's
YAML mapping.
llvm-svn: 241844
This commit changes the type of the field 'Name' in the struct
'yaml::MachineBasicBlock' from 'std::string' to 'yaml::StringValue'. This change
allows the MIR parser to report errors related to the MBB name with the proper
source locations.
llvm-svn: 241718
This commit adopts the 'ModuleSlotTracker' class, which was surfaced in r240842,
to print the global address operands. This change ensures that the slot tracker
won't have to be recreated every time a global address operand is printed,
making the MIR printing more efficient.
llvm-svn: 241645
This commit serializes the implicit flag for the register machine operands. It
introduces two new keywords into the machine instruction syntax: 'implicit' and
'implicit-def'. The 'implicit' keyword is used for the implicit register
operands, and the 'implicit-def' keyword is used for the register operands that
have both the implicit and the define flags set.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10709
llvm-svn: 241519
This commit implements serialization of the machine basic block successors. It
uses a YAML flow sequence that contains strings that have the MBB references.
The MBB references in those strings use the same syntax as the MBB machine
operands in the machine instruction strings.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10699
llvm-svn: 241093
This commit implements serialization of the register mask machine
operands. This commit serializes only the call preserved register
masks that are defined by a target, it doesn't serialize arbitrary
register masks.
This commit also extends the TargetRegisterInfo class and TableGen so that
the users of TRI can get the list of all the call preserved register masks and
their names.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10673
llvm-svn: 240966
This commit serializes the global address machine operands.
This commit doesn't serialize the operand's offset and target
flags, it serializes only the global value reference.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10671
llvm-svn: 240851
This commit serializes machine basic block operands. The
machine basic block operands use the following syntax:
%bb.<id>[.<name>]
This commit also modifies the YAML representation for the
machine basic blocks - a new, required field 'id' is added
to the MBB YAML mapping.
The id is used to resolve the MBB references to the
actual MBBs. And while the name of the MBB can be
included in a MBB reference, this name isn't used to
resolve MBB references - as it's possible that multiple
MBBs will reference the same BB and thus they will have the
same name. If the name is specified, the parser will verify
that it is equal to the name of the MBB with the specified id.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10608
llvm-svn: 240792
This commit serializes the 3 scalar boolean attributes from the
MachineRegisterInfo class: IsSSA, TracksRegLiveness, and
TracksSubRegLiveness. These attributes are serialized as part
of the machine function YAML mapping.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10618
llvm-svn: 240579
This commit serializes the null register machine operands.
It uses the '_' keyword to represent them, but the parser
also allows the '%noreg' named register syntax.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10580
llvm-svn: 240558
This commit introduces functionality that's used to serialize machine operands.
Only the physical register operands are serialized by this commit.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10525
llvm-svn: 240425
This commit implements initial machine instruction serialization. It
serializes machine instruction names. The instructions are represented
using a YAML sequence of string literals and are a part of machine
basic block YAML mapping.
This commit introduces a class called 'MIParser' which will be used to
parse the machine instructions and operands.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10481
llvm-svn: 240295
This commit implements the initial serialization of machine basic blocks in a
machine function. Only the simple, scalar MBB attributes are serialized. The
reference to LLVM IR's basic block is preserved when that basic block has a name.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10465
llvm-svn: 240145
This commit serializes the simple, scalar attributes from the
'MachineFunction' class.
Reviewers: Duncan P. N. Exon Smith
Differential Revision: http://reviews.llvm.org/D10449
llvm-svn: 239790
This commit decouples the MIR printer and the MIR printing pass so
that it will be possible to move the MIR printer into a separate
machine IR library later on.
Reviewers: Duncan P. N. Exon Smith
llvm-svn: 239788