The patch originally broke Chromium (crbug.com/791714) due to its failing to
specify that the new pseudo instructions clobber EFLAGS. This commit fixes
that.
> Summary: This strengthens the guard and matches MSVC.
>
> Reviewers: hans, etienneb
>
> Subscribers: hiraditya, JDevlieghere, vlad.tsyrklevich, llvm-commits
>
> Differential Revision: https://reviews.llvm.org/D40622
llvm-svn: 319824
Summary:
These instructions zero the non-scalar part of the lower 128-bits which makes them different than the FMA3 instructions which pass through the non-scalar part of the lower 128-bits.
I've only added fmadd because we should be able to derive all other variants using operand negation in the intrinsic header like we do for AVX512.
I think there are still some missed negate folding opportunities with the FMA4 instructions in light of this behavior difference that I hadn't noticed before.
I've split the tests so that we can use different intrinsics for scalar testing between the two. I just copied the tests split the RUN lines and changed out the scalar intrinsics.
fma4-fneg-combine.ll is a new test to make sure we negate the fma4 intrinsics correctly though there are a couple TODOs in it.
Reviewers: RKSimon, spatel
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39851
llvm-svn: 318984
(V)PHMINPOSUW determines the UMIN element in an v8i16 input, with suitable bit flipping it can also be used for SMAX/SMIN/UMAX cases as well.
This patch matches vXi16 SMAX/SMIN/UMAX/UMIN horizontal reductions and reduces the input down to a v8i16 vector before calling (V)PHMINPOSUW.
A later patch will use this for v16i8 reductions as well (PR32841).
Differential Revision: https://reviews.llvm.org/D39729
llvm-svn: 318917
This patch reverts change to X86TargetLowering::getScalarShiftAmountTy in
rL318727 and move the logic to DAGTypeLegalizer::SplitInteger.
The reason is that getScalarShiftAmountTy returns a shift amount type that
is suitable for common use cases in CodeGen. DAGTypeLegalizer::SplitInteger
is a rare situation which requires a shift amount type larger than what
getScalarShiftAmountTy. In this case, it is more reasonable to do special
handling of shift amount type in DAGTypeLegalizer::SplitInteger only. If
similar situations arises the logic may be moved to a separate function.
Differential Revision: https://reviews.llvm.org/D40320
llvm-svn: 318890
This makes the fact that X86 needs an explicit mask output not part of the type constraint for the ISD::MSCATTER.
This also gives the X86ISD::MGATHER/MSCATTER nodes a common base class simplifying the address selection code in X86ISelDAGToDAG.cpp
llvm-svn: 318823
DAGTypeLegalizer::SplitInteger uses default pointer size as shift amount constant type,
which causes less performant ISA in amdgcn---amdgiz target since the default pointer
type is i64 whereas the desired shift amount type is i32.
This patch fixes that by using TLI.getScalarShiftAmountTy in DAGTypeLegalizer::SplitInteger.
The X86 change is necessary since splitting i512 requires shifting amount of 256, which
cannot be held by i8.
Differential Revision: https://reviews.llvm.org/D40148
llvm-svn: 318727
All these headers already depend on CodeGen headers so moving them into
CodeGen fixes the layering (since CodeGen depends on Target, not the
other way around).
llvm-svn: 318490
The VRNDSCALE instructions implement a superset of the (V)ROUND instructions. They are equivalent if the upper 4-bits of the immediate are 0.
This patch lowers the legacy intrinsics to the VRNDSCALE ISD node and masks the upper bits of the immediate to 0. This allows us to take advantage of the larger register encoding space.
We should maybe consider converting VRNDSCALE back to VROUND in the EVEX to VEX pass if the extended registers are not being used.
I notice some load folding opportunities being missed for the VRNDSCALESS/SD instructions that I'll try to fix in future patches.
llvm-svn: 318008
I want to reuse the VRNDSCALE node for the legacy SSE rounding intrinsics so that those intrinsics can use EVEX instructions. All of these nodes share tablegen multiclasses so I split them all so that they all remain similar in their implementations.
llvm-svn: 318007
Next step is to use them for the legacy FMA scalar intrinsics as well. This will enable the legacy intrinsics to use EVEX encoded opcodes and the extended registers.
llvm-svn: 317453
Summary:
AVX512 added RCP14 and RSQRT instructions which improve accuracy over the legacy RCP and RSQRT instruction, but not enough accuracy to remove the need for a Newton Raphson refinement.
Currently we use these new instructions for the legacy packed SSE instrinics, but not the scalar instrinsics. And we use it for fast math optimization of division and reciprocal sqrt.
I think switching the legacy instrinsics maybe surprising to the user since it changes the answer based on which processor you're using regardless of any fastmath settings. It's also weird that we did something different between scalar and packed.
As far at the reciprocal estimation, I think it creates unnecessary deltas in our output behavior (and prevents EVEX->VEX). A little playing around with gcc and icc and godbolt suggest they don't change which instructions they use here.
This patch adds new X86ISD nodes for the RCP14/RSQRT14 and uses those for the new intrinsics. Leaving the old intrinsics to use the old instructions.
Going forward I think our focus should be on
-Supporting 512-bit vectors, which will have to use the RCP14/RSQRT14.
-Using RSQRT28/RCP28 to remove the Newton Raphson step on processors with AVX512ER
-Supporting double precision.
Reviewers: zvi, DavidKreitzer, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39583
llvm-svn: 317413
Summary:
INC/DEC don't update the carry flag so we need to make sure we don't try to use it.
This patch introduces new X86ISD opcodes for locked INC/DEC. Teaches lowerAtomicArithWithLOCK to emit these nodes if INC/DEC is not slow or the function is being optimized for size. An additional flag is added that allows the INC/DEC to be disabled if the caller determines that the carry flag is being requested.
The test_sub_1_cmp_1_setcc_ugt test is currently showing this bug. The other test case changes are recovering cases that were regressed in r316860.
This should fully fix PR35068 finishing the fix started in r316860.
Reviewers: RKSimon, zvi, spatel
Reviewed By: zvi
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D39411
llvm-svn: 316913
This makes sure the LSDA pointer isn't truncated to 32 bit.
Make LowerINTRINSIC_WO_CHAIN a member function instead of a static
function, so that it can use the getGlobalWrapperKind method.
This solves the second half of the issues mentioned in PR34720.
Differential Revision: https://reviews.llvm.org/D38343
llvm-svn: 314767
The XOP rotations act as ROTL with +ve values and ROTR with -ve values, which means that we can treat them all as ROTL with unsigned modulo. We already check that we're only trying to lower as ROTL for XOP rotations.
Differential Revision: https://reviews.llvm.org/D37949
llvm-svn: 314207
This required changing the ISD opcode for these instructions to have the commutable operands first and the addend last. This way tablegen can autogenerate the additional patterns for us.
llvm-svn: 314083
This allows vector-sized store merging of constants in DAGCombiner using the existing code in MergeConsecutiveStores().
All of the twisted logic that decides exactly what vector operations are legal and fast for each particular CPU are
handled separately in there using the appropriate hooks.
For the motivating tests in merge-store-constants.ll, we already produce the same vector code in IR via the SLP vectorizer.
So this is just providing a backend backstop for code that doesn't go through that pass (-O1). More details in PR24449:
https://bugs.llvm.org/show_bug.cgi?id=24449 (this change should be the last step to resolve that bug)
Differential Revision: https://reviews.llvm.org/D37451
llvm-svn: 313458
Recognizing this pattern during DAG combine hides information about the 'and' and the shift from other combines. I think it should be recognized at isel so its as late as possible. But it can't be done with table based isel because you need to be able to look at both immediates. This patch moves it to custom isel in X86ISelDAGToDAG.cpp.
This does break a couple tests in tbm_patterns because we are now emitting an and_flag node or (cmp and, 0) that we dont' recognize yet. We already had this problem for several other TBM patterns so I think this fine and we can address of them together.
I've also fixed a bug where the combine to BEXTR was preventing us from using a trick of zero extending AH to handle extracts of bits 15:8. We might still want to use BEXTR if it enables load folding. But honestly I hope we narrowed the load instead before got to isel.
I think we should probably also support matching BEXTR from (srl/srl (and mask << C), C). But that should be a different patch.
Differential Revision: https://reviews.llvm.org/D37592
llvm-svn: 313054
Summary:
r275950 added support for turning (trunc (X >> N) to i1) into BT(X, N). But that's no longer necessary now that i1 isn't legal.
This patch removes the support for that, but preserves some of the refactorings done in that commit.
Reviewers: guyblank, RKSimon, spatel, zvi
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D37673
llvm-svn: 312925
This goes back to a discussion about IR canonicalization. We'd like to preserve and convert
more IR to 'select' than we currently do because that's likely the best choice in IR:
http://lists.llvm.org/pipermail/llvm-dev/2016-September/105335.html
...but that's often not true for codegen, so we need to account for this pattern coming in
to the backend and transform it to better DAG ops.
Steps in this patch:
1. Add an EVT param to the existing convertSelectOfConstantsToMath() TLI hook to more finely
enable this transform. Other targets will probably want that anyway to distinguish scalars
from vectors. We're using that here to exclude AVX512 targets, but it may not be necessary.
2. Convert a vselect to ext+add. This eliminates a constant load/materialization, and the
vector ext is often free.
Implementing a more general fold using xor+and can be a follow-up for targets that don't have
a legal vselect. It's also possible that we can remove the TLI hook for the special case fold
implemented here because we're eliminating a constant, but it needs to be tested on other
targets.
Differential Revision: https://reviews.llvm.org/D36840
llvm-svn: 311731
There's no reason to have a target specific node with the same semantics as a target independent opcode.
This should simplify D36335 so that it doesn't need to touch X86ISelDAGToDAG.cpp
Differential Revision: https://reviews.llvm.org/D36983
llvm-svn: 311568
Summary:
Without the SrcVT its hard to know what is really being asked for. For example if your target has 128, 256, and 512 bit vectors. Maybe extracting 128 from 256 is cheap, but maybe extracting 128 from 512 is not.
For x86 we do support extracting a quarter of a 512-bit register. But for i1 vectors we don't have isel patterns for extracting arbitrary pieces. So we need this to have a correct implementation of isExtractSubvectorCheap for mask vectors.
Reviewers: RKSimon, zvi, efriedma
Reviewed By: RKSimon
Subscribers: aemerson, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D36649
llvm-svn: 310793
Move store merge to happen after intrinsic lowering to allow lowered
stores to be merged.
Some regressions due in MergeConsecutiveStores to missing
insert_subvector that are addressed in follow up patch.
Reviewers: craig.topper, efriedma, RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34559
llvm-svn: 310710
Changing mask argument type from const SmallVectorImpl<int>& to
ArrayRef<int>.
This came up in D35700 where a mask is received as an ArrayRef<int> and
we want to pass it to TargetLowering::isShuffleMaskLegal().
Also saves a few lines of code.
llvm-svn: 309085
splitting patch D34601 into two part. This part changes the location of two functions.
The second part will be based on that patch. This was requested by @RKSimon.
Reviewers:
1. dorit
2. Farhana
3. RKSimon
4. guyblank
5. DavidKreitzer
llvm-svn: 309084
This patch makes LSR generate better code for SystemZ in the cases of memory
intrinsics, Load->Store pairs or comparison of immediate with memory.
In order to achieve this, the following common code changes were made:
* New TTI hook: LSRWithInstrQueries(), which defaults to false. Controls if
LSR should do instruction-based addressing evaluations by calling
isLegalAddressingMode() with the Instruction pointers.
* In LoopStrengthReduce: handle address operands of memset, memmove and memcpy
as address uses, and call isFoldableMemAccessOffset() for any LSRUse::Address,
not just loads or stores.
SystemZ changes:
* isLSRCostLess() implemented with Insns first, and without ImmCost.
* New function supportedAddressingMode() that is a helper for TTI methods
looking at Instructions passed via pointers.
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D35262https://reviews.llvm.org/D35049
llvm-svn: 308729
Summary:
Add a combine for creating a truncate to replace a build_vector composed of extracts with
indices that form a stride-2^N series.
Example:
v8i32 V = ...
v4i32 build_vector((extract_elt V, 0), (extract_elt V, 2), (extract_elt V, 4), (extract_elt V, 6))
-->
v4i32 truncate (bitcast V to v4i64)
Related discussion in llvm-dev about canonicalizing shuffles to
truncates in LLVM IR:
http://lists.llvm.org/pipermail/llvm-dev/2017-January/108936.html.
Reviewers: spatel, RKSimon, efriedma, igorb, craig.topper, wolfgangp, delena
Reviewed By: delena
Subscribers: guyblank, delena, javed.absar, llvm-commits
Differential Revision: https://reviews.llvm.org/D34077
llvm-svn: 307036
Masked gather for vector length 2 is lowered incorrectly for element type i32.
The type <2 x i32> was automatically extended to <2 x i64> and we generated VPGATHERQQ instead of VPGATHERQD.
The type <2 x float> is extended to <4 x float>, so there is no bug for this type, but the sequence may be more optimal.
In this patch I'm fixing <2 x i32>bug and optimizing <2 x float> sequence for GATHERs only. The same fix should be done for Scatters as well.
Differential revision: https://reviews.llvm.org/D34343
llvm-svn: 305987