Summary:
Make it possible to feed runtime information back to tablegen to enable
profile-guided tablegen-eration, detection of untested tablegen definitions, etc.
Being a cross-compiler by nature, LLVM will potentially collect data for multiple
architectures (e.g. when running 'ninja check'). We therefore need a way for
TableGen to figure out what data applies to the backend it is generating at the
time. This patch achieves that by including the name of the 'def X : Target ...'
for the backend in the TargetRegistry.
Reviewers: qcolombet
Reviewed By: qcolombet
Subscribers: jholewinski, arsenm, jyknight, aditya_nandakumar, sdardis, nemanjai, ab, nhaehnle, t.p.northover, javed.absar, qcolombet, llvm-commits, fedor.sergeev
Differential Revision: https://reviews.llvm.org/D39742
llvm-svn: 318352
This patch provides basic support for powerpc64le as an LLVM target.
However, use of this target will not actually generate little-endian
code. Instead, use of the target will cause the correct little-endian
built-in defines to be generated, so that code that tests for
__LITTLE_ENDIAN__, for example, will be correctly parsed for
syntax-only testing. Code generation will otherwise be the same as
powerpc64 (big-endian), for now.
The patch leaves open the possibility of creating a little-endian
PowerPC64 back end, but there is no immediate intent to create such a
thing.
The LLVM portions of this patch simply add ppc64le coverage everywhere
that ppc64 coverage currently exists. There is nothing of any import
worth testing until such time as little-endian code generation is
implemented. In the corresponding Clang patch, there is a new test
case variant to ensure that correct built-in defines for little-endian
code are generated.
llvm-svn: 187179
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.
There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.
The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.
I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).
I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.
llvm-svn: 171366
- Instead of requiring targets to define a JIT quality match function, we just
have them specify if they support a JIT.
- Target selection for the JIT just gets the host triple and looks for the best
target which matches the triple and has a JIT.
llvm-svn: 77060