This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
This reapplies r230044 with a fixed configure+make build and updated
dependencies.
llvm-svn: 230067
- Add Host::GlobArguments() to perform local-globbing
I implemented this on OSX and Windows in terms of argdumper (Windows implementation is essentially the same as the OSX version + a change in binary name and some string magic)
Other platforms did not specifically chime in, so I left it unimplemented for them for the time being. Please feel free to fill in the blanks
- Add Platform::GlobArguments() to support remote-globbing
For now, no feature change here - but now we have infrastructure to help GDBRemote targets to support globbing - and patches to that effect will follow
No visible feature change
llvm-svn: 230065
There are two issues here:
1) It's too late to rebuild at this point, because we won't go through
removeModules and when we try to reload the new .pcm we'll get the old
one instead. We might be able to call removeModules after an OutOfDate
here, but I'm not yet confident that it is always safe to do so.
2) In practice, this check fails spuriously when the umbrella header
appears to change because of a VFS change that means it maps to a
different copy of the same file. Because of this, we just skip the
check for now.
llvm-svn: 230064
The notion of a range of inserted safepoint related code is no longer really applicable. This survived over from an earlier implementation. Just saving the inserted gc.statepoint and working from that is far clearer given the current code structure. Particularly when invokable statepoints get involved.
llvm-svn: 230063
Yet another chapter in the endless story. While this looks like we leave
the loop in a non-canonical state this replicates the logic in
LoopSimplify so it doesn't diverge from the canonical form in any way.
PR21968
llvm-svn: 230058
In the old (well, current) schema, there are two types of file
references: untagged and tagged (the latter references the former).
!0 = !{!"filename", !"/directory"}
!1 = !{!"0x29", !1} ; DW_TAG_file_type [filename] [/directory]
The interface to `DIBuilder` universally takes the tagged version,
described by `DIFile`. However, most `file:` references actually use
the untagged version directly.
In the new hierarchy, I'm merging this into a single node: `MDFile`.
Originally I'd planned to keep the old schema unchanged until after I
moved the new hierarchy into place.
However, it turns out to be trivial to make `MDFile` match both nodes at
the same time.
- Anyone referencing !1 does so through `DIFile`, whose implementation
I need to gut anyway (as I do the rest of the `DIDescriptor`s).
- Anyone referencing !0 just references an `MDNode`, and expects a
node with two `MDString` operands.
This commit achieves that, and updates all the testcases for the parts
of the new hierarchy that used the two-node schema (I've replaced the
untagged nodes with `distinct !{}` to make the diff clear (otherwise the
metadata all gets renumbered); it might be worthwhile to come back and
delete those nodes and renumber the world, not sure).
llvm-svn: 230057
This patch introduces the -fsanitize=cfi-vptr flag, which enables a control
flow integrity scheme that checks that virtual calls take place using a vptr of
the correct dynamic type. More details in the new docs/ControlFlowIntegrity.rst
file.
It also introduces the -fsanitize=cfi flag, which is currently a synonym for
-fsanitize=cfi-vptr, but will eventually cover all CFI checks implemented
in Clang.
Differential Revision: http://reviews.llvm.org/D7424
llvm-svn: 230055
This patch introduces a new mechanism that allows IR modules to co-operatively
build pointer sets corresponding to addresses within a given set of
globals. One particular use case for this is to allow a C++ program to
efficiently verify (at each call site) that a vtable pointer is in the set
of valid vtable pointers for the class or its derived classes. One way of
doing this is for a toolchain component to build, for each class, a bit set
that maps to the memory region allocated for the vtables, such that each 1
bit in the bit set maps to a valid vtable for that class, and lay out the
vtables next to each other, to minimize the total size of the bit sets.
The patch introduces a metadata format for representing pointer sets, an
'@llvm.bitset.test' intrinsic and an LTO lowering pass that lays out the globals
and builds the bitsets, and documents the new feature.
Differential Revision: http://reviews.llvm.org/D7288
llvm-svn: 230054
usage of instruction ADDU16 by CodeGen. For this instruction an improper
register is allocated, i.e. the register that is not from register set defined
for the instruction.
llvm-svn: 230053
changes to remove non-Function based subtargets out of the asm
printer. For module level emission we'll need to construct up
an MCSubtargetInfo so that we can encode instructions for
emission.
llvm-svn: 230050
When doing style cleanup, I noticed a minor bug in this code. If we have a pointer that we think is unused after a statepoint and thus doesn't need relocation, we store a null pointer into the alloca we're about to promote. This helps turn a mistake in liveness analysis into an easily debuggable crash. It turned out this code had never been updated to handle invoke statepoints.
There's no test for this. Without a bug in liveness, it appears impossible to make this trigger in a way which is visible in the resulting IR. We might store the null, but when promoting the alloca, there will be no uses and thus nothing to test against. Suggestions on how to test are very welcome.
llvm-svn: 230047
This is a necessary prerequisite for debugging with modules.
The .pcm files become containers that hold the serialized AST which allows
us to store debug information in the module file that can be shared by all
object files that were built importing the module.
rdar://problem/19104245
llvm-svn: 230044
This patch teaches X86FastISel how to select intrinsic 'convert_from_fp16' and
intrinsic 'convert_to_fp16'.
If the target has F16C, we can select VCVTPS2PHrr for a float-half conversion,
and VCVTPH2PSrr for a half-float conversion.
Differential Revision: http://reviews.llvm.org/D7673
llvm-svn: 230043
Starting to update variable naming and types to match LLVM style. This will be an incremental process to minimize the chance of breakage as I work. Step one, rename member variables to LLVM CamelCase and use llvm's ADT. Much more to come.
llvm-svn: 230042
Summary: Turns out if you don't set CMAKE_BUILD_TYPE the default is an empty string. This results in some of the behaviors of debug builds, but not all of them. For example ENABLE_ASSERTIONS is false.
Reviewers: rnk
Reviewed By: rnk
Subscribers: chapuni, llvm-commits
Differential Revision: http://reviews.llvm.org/D7360
llvm-svn: 230041
Before calling Function::getGC to test for enablement, we need to make sure there's actually a GC at all via Function::hasGC. Otherwise, we'd crash on functions without a GC. Thankfully, this only mattered if you manually scheduled the pass, but still, oops. :(
llvm-svn: 230040
EmitFunctionStubs is called from doFinalization and so can't
depend on the Subtarget existing. It's also irrelevant as
we know we're darwin since we're in the darwin asm printer.
llvm-svn: 230039
For now -funique-section-names is the default, so no change in default behavior.
The total .o size in a build of llvm and clang goes from 241687775 to 230649031
bytes if -fno-unique-section-names is used.
llvm-svn: 230031
SuppressionContext is no longer a singleton, shared by all sanitizers,
but a regular class. Each of ASan, LSan, UBSan and TSan now have their
own SuppressionContext, which only parses suppressions specific to
that sanitizer.
"suppressions" flag is moved away from common flags into tool-specific
flags, so the user now may pass
ASAN_OPTIONS=suppressions=asan_supp.txt LSAN_OPIONS=suppressions=lsan_supp.txt
in a single invocation.
llvm-svn: 230026
This canonicalization step saves us 3 pattern matching possibilities * 4 math ops
for scalar FP math that uses xmm regs. The backend can re-commute the operands
post-instruction-selection if that makes register allocation better.
The tests in llvm/test/CodeGen/X86/sse-scalar-fp-arith.ll cover this scenario already,
so there are no new tests with this patch.
Differential Revision: http://reviews.llvm.org/D7777
llvm-svn: 230024
Summary:
This patch includes following changes:
* split lldb-mi tests into separate folders. It will make our life simpler because we can modify a test program of certain test and don't worry about other tests
* a bit refactoring
* fix comments
* improve some tests
Reviewers: emaste, clayborg, abidh
Reviewed By: clayborg, abidh
Subscribers: clayborg, lldb-commits, emaste, abidh
Differential Revision: http://reviews.llvm.org/D7762
llvm-svn: 230022