This reverts commit 61ba1481e2.
I'm reverting this because it breaks the lldb build with
incomplete switch coverage warnings. I would fix it forward,
but am not familiar enough with lldb to determine the correct
fix.
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:3958:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
^
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:4633:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
^
lldb/source/Plugins/TypeSystem/Clang/TypeSystemClang.cpp:4889:11: error: enumeration values 'DependentExtInt' and 'ExtInt' not handled in switch [-Werror,-Wswitch]
switch (qual_type->getTypeClass()) {
Introduction/Motivation:
LLVM-IR supports integers of non-power-of-2 bitwidth, in the iN syntax.
Integers of non-power-of-two aren't particularly interesting or useful
on most hardware, so much so that no language in Clang has been
motivated to expose it before.
However, in the case of FPGA hardware normal integer types where the
full bitwidth isn't used, is extremely wasteful and has severe
performance/space concerns. Because of this, Intel has introduced this
functionality in the High Level Synthesis compiler[0]
under the name "Arbitrary Precision Integer" (ap_int for short). This
has been extremely useful and effective for our users, permitting them
to optimize their storage and operation space on an architecture where
both can be extremely expensive.
We are proposing upstreaming a more palatable version of this to the
community, in the form of this proposal and accompanying patch. We are
proposing the syntax _ExtInt(N). We intend to propose this to the WG14
committee[1], and the underscore-capital seems like the active direction
for a WG14 paper's acceptance. An alternative that Richard Smith
suggested on the initial review was __int(N), however we believe that
is much less acceptable by WG14. We considered _Int, however _Int is
used as an identifier in libstdc++ and there is no good way to fall
back to an identifier (since _Int(5) is indistinguishable from an
unnamed initializer of a template type named _Int).
[0]https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html)
[1]http://www.open-std.org/jtc1/sc22/wg14/www/docs/n2472.pdf
Differential Revision: https://reviews.llvm.org/D73967
Summary:
Remove usages of asserting vector getters in Type in preparation for the
VectorType refactor. The existence of these functions complicates the
refactor while adding little value.
Reviewers: sdesmalen, efriedma, krememek
Reviewed By: sdesmalen, efriedma
Subscribers: dexonsmith, Charusso, cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D77257
Fix a bug in IRGen where it wasn't destructing compound literals in C
that are ObjC pointer arrays or non-trivial structs. Also diagnose jumps
that enter or exit the lifetime of the compound literals.
rdar://problem/51867864
Differential Revision: https://reviews.llvm.org/D64464
Implement support for C++2a requires-expressions.
Re-commit after compilation failure on some platforms due to alignment issues with PointerIntPair.
Differential Revision: https://reviews.llvm.org/D50360
GCC supports the conditional operator on VectorTypes that acts as a
'select' in C++ mode. This patch implements the support. Types are
converted as closely to GCC's behavior as possible, though in a few
places consistency with our existing vector type support was preferred.
Note that this implementation is different from the OpenCL version in a
number of ways, so it unfortunately required a different implementation.
First, the SEMA rules and promotion rules are significantly different.
Secondly, GCC implements COND[i] != 0 ? LHS[i] : RHS[i] (where i is in
the range 0- VectorSize, for each element). In OpenCL, the condition is
COND[i] < 0 ? LHS[i]: RHS[i].
In the process of implementing this, it was also required to make the
expression COND ? LHS : RHS type dependent if COND is type dependent,
since the type is now dependent on the condition. For example:
T ? 1 : 2;
Is not typically type dependent, since the result can be deduced from
the operands. HOWEVER, if T is a VectorType now, it could change this
to a 'select' (basically a swizzle with a non-constant mask) with the 1
and 2 being promoted to vectors themselves.
While this is a change, it is NOT a standards incompatible change. Based
on my (and D. Gregor's, at the time of writing the code) reading of the
standard, the expression is supposed to be type dependent if ANY
sub-expression is type dependent.
Differential Revision: https://reviews.llvm.org/D71463
Update the IRBuilder to generate constrained FP comparisons in
CreateFCmp when IsFPConstrained is true, similar to the other
places in the IRBuilder.
Also, add a new CreateFCmpS to emit signaling FP comparisons,
and use it in clang where comparisons are supposed to be signaling
(currently, only when emitting code for the <, <=, >, >= operators).
Note that there is currently no way to add fast-math flags to a
constrained FP comparison, since this is implemented as an intrinsic
call that returns a boolean type, and FMF are only allowed for calls
returning a floating-point type. However, given the discussion around
https://bugs.llvm.org/show_bug.cgi?id=42179, it seems that FCmp itself
really shouldn't have any FMF either, so this is probably OK.
Reviewed by: craig.topper
Differential Revision: https://reviews.llvm.org/D71467
Added codegen support for lastprivate conditional. According to the
standard, if when the conditional modifier appears on the clause, if an
assignment to a list item is encountered in the construct then the
original list item is assigned the value that is assigned to the new
list item in the sequentially last iteration or lexically last section
in which such an assignment is encountered.
We look for the assignment operations and check if the left side
references lastprivate conditional variable. Then the next code is
emitted:
if (last_iv_a <= iv) {
last_iv_a = iv;
last_a = lp_a;
}
At the end the implicit barrier is generated to wait for the end of all
threads and then in the check for the last iteration the private copy is
assigned the last value.
if (last_iter) {
lp_a = last_a; // <--- new code
a = lp_a; // <--- store of private value to the original variable.
}
We have an fneg instruction now and should use it instead of the fsub -0.0 idiom. Looks like we had no test that showed that we handled the negation cases here so I've added new tests.
Differential Revision: https://reviews.llvm.org/D72010
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
This fixes the buildbot failures.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
GEP index size can be specified in the DataLayout, introduced in D42123. However, there were still places
in which getIndexSizeInBits was used interchangeably with getPointerSizeInBits. This notably caused issues
with Instcombine's visitPtrToInt; but the unit tests was incorrect, so this remained undiscovered.
Differential Revision: https://reviews.llvm.org/D68328
Patch by Joseph Faulls!
This has two main effects:
- Optimizes debug info size by saving 221.86 MB of obj file size in a
Windows optimized+debug build of 'all'. This is 3.03% of 7,332.7MB of
object file size.
- Incremental step towards decoupling target intrinsics.
The enums are still compact, so adding and removing a single
target-specific intrinsic will trigger a rebuild of all of LLVM.
Assigning distinct target id spaces is potential future work.
Part of PR34259
Reviewers: efriedma, echristo, MaskRay
Reviewed By: echristo, MaskRay
Differential Revision: https://reviews.llvm.org/D71320
AggValueSlot
This reapplies 8a5b7c3570 after a null
dereference bug in CGOpenMPRuntime::emitUserDefinedMapper.
Original commit message:
This is needed for the pointer authentication work we plan to do in the
near future.
a63a81bd99/clang/docs/PointerAuthentication.rst
Summary: Fix PR43700
The ConstantEmitter in AggExprEmitter::EmitArrayInit was initialized
with the CodeGenFunction set to null, which caused the crash.
Also simplify another call, and make the CGF member a const pointer
since it is public but only assigned in the constructor.
Subscribers: cfe-commits
Tags: #clang
Differential Revision: https://reviews.llvm.org/D70302
Summary:
Implicit Conversion Sanitizer is *almost* feature complete.
There aren't *that* much unsanitized things left,
two major ones are increment/decrement (this patch) and bit fields.
As it was discussed in
[[ https://bugs.llvm.org/show_bug.cgi?id=39519 | PR39519 ]],
unlike `CompoundAssignOperator` (which is promoted internally),
or `BinaryOperator` (for which we always have promotion/demotion in AST)
or parts of `UnaryOperator` (we have promotion/demotion but only for
certain operations), for inc/dec, clang omits promotion/demotion
altogether, under as-if rule.
This is technically correct: https://rise4fun.com/Alive/zPgD
As it can be seen in `InstCombineCasts.cpp` `canEvaluateTruncated()`,
`add`/`sub`/`mul`/`and`/`or`/`xor` operators can all arbitrarily
be extended or truncated:
901cd3b3f6/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (L1320-L1334)
But that has serious implications:
1. Since we no longer model implicit casts, do we pessimise
their AST representation and everything that uses it?
2. There is no demotion, so lossy demotion sanitizer does not trigger :]
Now, i'm not going to argue about the first problem here,
but the second one **needs** to be addressed. As it was stated
in the report, this is done intentionally, so changing
this in all modes would be considered a penalization/regression.
Which means, the sanitization-less codegen must not be altered.
It was also suggested to not change the sanitized codegen
to the one with demotion, but i quite strongly believe
that will not be the wise choice here:
1. One will need to re-engineer the check that the inc/dec was lossy
in terms of `@llvm.{u,s}{add,sub}.with.overflow` builtins
2. We will still need to compute the result we would lossily demote.
(i.e. the result of wide `add`ition/`sub`traction)
3. I suspect it would need to be done right here, in sanitization.
Which kinda defeats the point of
using `@llvm.{u,s}{add,sub}.with.overflow` builtins:
we'd have two `add`s with basically the same arguments,
one of which is used for check+error-less codepath and other one
for the error reporting. That seems worse than a single wide op+check.
4. OR, we would need to do that in the compiler-rt handler.
Which means we'll need a whole new handler.
But then what about the `CompoundAssignOperator`,
it would also be applicable for it.
So this also doesn't really seem like the right path to me.
5. At least X86 (but likely others) pessimizes all sub-`i32` operations
(due to partial register stalls), so even if we avoid promotion+demotion,
the computations will //likely// be performed in `i32` anyways.
So i'm not really seeing much benefit of
not doing the straight-forward thing.
While looking into this, i have noticed a few more LLVM middle-end
missed canonicalizations, and filed
[[ https://bugs.llvm.org/show_bug.cgi?id=44100 | PR44100 ]],
[[ https://bugs.llvm.org/show_bug.cgi?id=44102 | PR44102 ]].
Those are not specific to inc/dec, we also have them for
`CompoundAssignOperator`, and it can happen for normal arithmetics, too.
But if we take some other path in the patch, it will not be applicable
here, and we will have most likely played ourselves.
TLDR: front-end should emit canonical, easy-to-optimize yet
un-optimized code. It is middle-end's job to make it optimal.
I'm really hoping reviewers agree with my personal assessment
of the path this patch should take..
This originally landed in 9872ea4ed1
but got immediately reverted in cbfa237892
because the assertion was faulty. That fault ended up being caused
by the enum - while there will be promotion, both types are unsigned,
with same width. So we still don't need to sanitize non-signed cases.
So far. Maybe the assert will tell us this isn't so.
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=44054 | PR44054 ]].
Refs. https://github.com/google/sanitizers/issues/940
Reviewers: rjmccall, erichkeane, rsmith, vsk
Reviewed By: erichkeane
Subscribers: mehdi_amini, dexonsmith, cfe-commits, #sanitizers, llvm-commits, aaron.ballman, t.p.northover, efriedma, regehr
Tags: #llvm, #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D70539
The asssertion that was added does not hold,
breaks on test-suite/MultiSource/Applications/SPASS/analyze.c
Will reduce the testcase and revisit.
This reverts commit 9872ea4ed1, 870f3542d3.
Summary:
Implicit Conversion Sanitizer is *almost* feature complete.
There aren't *that* much unsanitized things left,
two major ones are increment/decrement (this patch) and bit fields.
As it was discussed in
[[ https://bugs.llvm.org/show_bug.cgi?id=39519 | PR39519 ]],
unlike `CompoundAssignOperator` (which is promoted internally),
or `BinaryOperator` (for which we always have promotion/demotion in AST)
or parts of `UnaryOperator` (we have promotion/demotion but only for
certain operations), for inc/dec, clang omits promotion/demotion
altogether, under as-if rule.
This is technically correct: https://rise4fun.com/Alive/zPgD
As it can be seen in `InstCombineCasts.cpp` `canEvaluateTruncated()`,
`add`/`sub`/`mul`/`and`/`or`/`xor` operators can all arbitrarily
be extended or truncated:
901cd3b3f6/llvm/lib/Transforms/InstCombine/InstCombineCasts.cpp (L1320-L1334)
But that has serious implications:
1. Since we no longer model implicit casts, do we pessimise
their AST representation and everything that uses it?
2. There is no demotion, so lossy demotion sanitizer does not trigger :]
Now, i'm not going to argue about the first problem here,
but the second one **needs** to be addressed. As it was stated
in the report, this is done intentionally, so changing
this in all modes would be considered a penalization/regression.
Which means, the sanitization-less codegen must not be altered.
It was also suggested to not change the sanitized codegen
to the one with demotion, but i quite strongly believe
that will not be the wise choice here:
1. One will need to re-engineer the check that the inc/dec was lossy
in terms of `@llvm.{u,s}{add,sub}.with.overflow` builtins
2. We will still need to compute the result we would lossily demote.
(i.e. the result of wide `add`ition/`sub`traction)
3. I suspect it would need to be done right here, in sanitization.
Which kinda defeats the point of
using `@llvm.{u,s}{add,sub}.with.overflow` builtins:
we'd have two `add`s with basically the same arguments,
one of which is used for check+error-less codepath and other one
for the error reporting. That seems worse than a single wide op+check.
4. OR, we would need to do that in the compiler-rt handler.
Which means we'll need a whole new handler.
But then what about the `CompoundAssignOperator`,
it would also be applicable for it.
So this also doesn't really seem like the right path to me.
5. At least X86 (but likely others) pessimizes all sub-`i32` operations
(due to partial register stalls), so even if we avoid promotion+demotion,
the computations will //likely// be performed in `i32` anyways.
So i'm not really seeing much benefit of
not doing the straight-forward thing.
While looking into this, i have noticed a few more LLVM middle-end
missed canonicalizations, and filed
[[ https://bugs.llvm.org/show_bug.cgi?id=44100 | PR44100 ]],
[[ https://bugs.llvm.org/show_bug.cgi?id=44102 | PR44102 ]].
Those are not specific to inc/dec, we also have them for
`CompoundAssignOperator`, and it can happen for normal arithmetics, too.
But if we take some other path in the patch, it will not be applicable
here, and we will have most likely played ourselves.
TLDR: front-end should emit canonical, easy-to-optimize yet
un-optimized code. It is middle-end's job to make it optimal.
I'm really hoping reviewers agree with my personal assessment
of the path this patch should take..
Fixes [[ https://bugs.llvm.org/show_bug.cgi?id=44054 | PR44054 ]].
Reviewers: rjmccall, erichkeane, rsmith, vsk
Reviewed By: erichkeane
Subscribers: mehdi_amini, dexonsmith, cfe-commits, #sanitizers, llvm-commits, aaron.ballman, t.p.northover, efriedma, regehr
Tags: #llvm, #clang, #sanitizers
Differential Revision: https://reviews.llvm.org/D70539
Atomic compound expressions try to use atomicrmw if possible, but this
path doesn't set the Result variable, leaving it to crash in later code
if anything ever tries to use the result of the expression. This fixes
that issue by recalculating the new value based on the old one
atomically loaded.
Part of C++20 Concepts implementation effort. Added Concept Specialization Expressions that are created when a concept is refe$
D41217 on Phabricator.
(recommit after fixing failing Parser test on windows)
llvm-svn: 374903
Part of C++20 Concepts implementation effort. Added Concept Specialization Expressions that are created when a concept is referenced with arguments, and tests thereof.
llvm-svn: 374882
The behavior from the original patch has changed, since we're no longer
allowing LLVM to just ignore the alignment. Instead, we're just
assuming the maximum possible alignment.
Differential Revision: https://reviews.llvm.org/D68824
llvm-svn: 374562
The test fails on Windows, with
error: 'warning' diagnostics expected but not seen:
File builtin-assume-aligned.c Line 62: requested alignment
must be 268435456 bytes or smaller; assumption ignored
error: 'warning' diagnostics seen but not expected:
File builtin-assume-aligned.c Line 62: requested alignment
must be 8192 bytes or smaller; assumption ignored
llvm-svn: 374456
Code to handle __builtin_assume_aligned was allowing larger values, but
would convert this to unsigned along the way. This patch removes the
EmitAssumeAligned overloads that take unsigned to do away with this
problem.
Additionally, it adds a warning that values greater than 1 <<29 are
ignored by LLVM.
Differential Revision: https://reviews.llvm.org/D68824
llvm-svn: 374450