This file lists every pass in LLVM, and is included by Pass.h, which is
very popular. Every time we add, remove, or rename a pass in LLVM, it
caused lots of recompilation.
I found this fact by looking at this table, which is sorted by the
number of times a file was changed over the last 100,000 git commits
multiplied by the number of object files that depend on it in the
current checkout:
recompiles touches affected_files header
342380 95 3604 llvm/include/llvm/ADT/STLExtras.h
314730 234 1345 llvm/include/llvm/InitializePasses.h
307036 118 2602 llvm/include/llvm/ADT/APInt.h
213049 59 3611 llvm/include/llvm/Support/MathExtras.h
170422 47 3626 llvm/include/llvm/Support/Compiler.h
162225 45 3605 llvm/include/llvm/ADT/Optional.h
158319 63 2513 llvm/include/llvm/ADT/Triple.h
140322 39 3598 llvm/include/llvm/ADT/StringRef.h
137647 59 2333 llvm/include/llvm/Support/Error.h
131619 73 1803 llvm/include/llvm/Support/FileSystem.h
Before this change, touching InitializePasses.h would cause 1345 files
to recompile. After this change, touching it only causes 550 compiles in
an incremental rebuild.
Reviewers: bkramer, asbirlea, bollu, jdoerfert
Differential Revision: https://reviews.llvm.org/D70211
Add a pass to lower is.constant and objectsize intrinsics
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.
The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.
Differential Revision: https://reviews.llvm.org/D65280
llvm-svn: 374784
This pass lowers is.constant and objectsize intrinsics not simplified by
earlier constant folding, i.e. if the object given is not constant or if
not using the optimized pass chain. The result is recursively simplified
and constant conditionals are pruned, so that dead blocks are removed
even for -O0. This allows inline asm blocks with operand constraints to
work all the time.
The new pass replaces the existing lowering in the codegen-prepare pass
and fallbacks in SDAG/GlobalISEL and FastISel. The latter now assert
on the intrinsics.
Differential Revision: https://reviews.llvm.org/D65280
llvm-svn: 374743
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
llvm-svn: 369013
This allows later passes (in particular InstCombine) to optimize more
cases.
One that's important to us is `memcmp(p, q, constant) < 0` and memcmp(p, q, constant) > 0.
llvm-svn: 364412
This allows targets to make more decisions about reserved registers
after isel. For example, now it should be certain there are calls or
stack objects in the frame or not, which could have been introduced by
legalization.
Patch by Matthias Braun
llvm-svn: 363757
This patch aims to reduce spilling and register moves by using the 3-address
versions of instructions per default instead of the 2-address equivalent
ones. It seems that both spilling and register moves are improved noticeably
generally.
Regalloc hints are passed to increase conversions to 2-address instructions
which are done in SystemZShortenInst.cpp (after regalloc).
Since the SystemZ reg/mem instructions are 2-address (dst and lhs regs are
the same), foldMemoryOperandImpl() can no longer trivially fold a spilled
source register since the reg/reg instruction is now 3-address. In order to
remedy this, new 3-address pseudo memory instructions are used to perform the
folding only when the dst and lhs virtual registers are known to be allocated
to the same physreg. In order to not let MachineCopyPropagation run and
change registers on these transformed instructions (making it 3-address), a
new target pass called SystemZPostRewrite.cpp is run just after
VirtRegRewriter, that immediately lowers the pseudo to a target instruction.
If it would have been possibe to insert a COPY instruction and change a
register operand (convert to 2-address) in foldMemoryOperandImpl() while
trusting that the caller (e.g. InlineSpiller) would update/repair the
involved LiveIntervals, the solution involving pseudo instructions would not
have been needed. This is perhaps a potential improvement (see Phabricator
post).
Common code changes:
* A new hook TargetPassConfig::addPostRewrite() is utilized to be able to run a
target pass immediately before MachineCopyPropagation.
* VirtRegMap is passed as an argument to foldMemoryOperand().
Review: Ulrich Weigand, Quentin Colombet
https://reviews.llvm.org/D60888
llvm-svn: 362868
Other opcodes shouldn't be CSE'd until we can be sure debug info quality won't
be degraded.
This change also improves the IRTranslator so that in most places, but not all,
it creates constants using the MIRBuilder directly instead of first creating a
new destination vreg and then creating a constant. By doing this, the
buildConstant() method can just return the vreg of an existing G_CONSTANT
instead of having to create a COPY from it.
I measured a 0.2% improvement in compile time and a 0.9% improvement in code
size at -O0 ARM64.
Compile time:
Program base cse diff
test-suite...ark/tramp3d-v4/tramp3d-v4.test 9.04 9.12 0.8%
test-suite...Mark/mafft/pairlocalalign.test 2.68 2.66 -0.7%
test-suite...-typeset/consumer-typeset.test 5.53 5.51 -0.4%
test-suite :: CTMark/lencod/lencod.test 5.30 5.28 -0.3%
test-suite :: CTMark/Bullet/bullet.test 25.82 25.76 -0.2%
test-suite...:: CTMark/ClamAV/clamscan.test 6.92 6.90 -0.2%
test-suite...TMark/7zip/7zip-benchmark.test 34.24 34.17 -0.2%
test-suite :: CTMark/SPASS/SPASS.test 6.25 6.24 -0.1%
test-suite...:: CTMark/sqlite3/sqlite3.test 1.66 1.66 -0.1%
test-suite :: CTMark/kimwitu++/kc.test 13.61 13.60 -0.0%
Geomean difference -0.2%
Code size:
Program base cse diff
test-suite...-typeset/consumer-typeset.test 1315632 1266480 -3.7%
test-suite...:: CTMark/ClamAV/clamscan.test 1313892 1297508 -1.2%
test-suite :: CTMark/lencod/lencod.test 1439504 1423112 -1.1%
test-suite...TMark/7zip/7zip-benchmark.test 2936980 2904172 -1.1%
test-suite :: CTMark/Bullet/bullet.test 3478276 3445460 -0.9%
test-suite...ark/tramp3d-v4/tramp3d-v4.test 8082868 8033492 -0.6%
test-suite :: CTMark/kimwitu++/kc.test 3870380 3853972 -0.4%
test-suite :: CTMark/SPASS/SPASS.test 1434904 1434896 -0.0%
test-suite...Mark/mafft/pairlocalalign.test 764528 764528 0.0%
test-suite...:: CTMark/sqlite3/sqlite3.test 782092 782092 0.0%
Geomean difference -0.9%
Differential Revision: https://reviews.llvm.org/D60580
llvm-svn: 358369
Because CodeGen can't depend on GlobalISel, we need a way to encapsulate the CSE
configs that can be passed between TargetPassConfig and the targets' custom
pass configs. This CSEConfigBase allows targets to create custom CSE configs
which is then used by the GISel passes for the CSEMIRBuilder.
This support will be used in a follow up commit to allow constant-only CSE for
-O0 compiles in D60580.
llvm-svn: 358368
This will allow targets more flexibility to replace the
register allocator core passes. In a future commit,
AMDGPU will run the core register assignment passes
twice, and will also want to disallow using the
standard -regalloc option.
llvm-svn: 356506
Summary:
Prior to r310876 one of our out-of-tree targets was enabling IPRA by modifying
the TargetOptions::EnableIPRA. This no longer works on current trunk since the
useIPRA() hook overrides any values that are set in advance. This patch adjusts
the behaviour of the hook so that API users and useIPRA() can both enable it
but useIPRA() cannot disable it if the API user already enabled it.
Reviewers: arsenm
Reviewed By: arsenm
Subscribers: wdng, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D38043
llvm-svn: 354692
Will allow re-using the machinery for independent
sets of register allocators.
This will allow AMDGPU to use separate command line
options for the allocator to use for SGPRs separate
from VGPRs.
llvm-svn: 354687
https://reviews.llvm.org/D57178
Now add a hook in TargetPassConfig to query if CSE needs to be
enabled. By default this hook returns false only for O0 opt level but
this can be overridden by the target.
As a consequence of the default of enabled for non O0, a few tests
needed to be updated to not use CSE (by passing in -O0) to the run
line.
reviewed by: arsenm
llvm-svn: 352126
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
Commit rL347861 introduced an unintentional change in the behaviour when
compiling for AArch64 at -O0 with -global-isel=0. Previously, explicitly
disabling GlobalISel resulted in using FastISel but an updated condition
in the commit changed it to using SelectionDAG. The patch fixes this
condition and slightly better organizes the code that chooses the
instruction selector.
Fixes PR40131.
Differential Revision: https://reviews.llvm.org/D56266
llvm-svn: 350626
Currently if you use -{start,stop}-{before,after}, it picks
the first instance with the matching pass name. If you run
the same pass multiple times, there's no way to distinguish them.
Allow specifying a run index wih ,N to specify which you mean.
llvm-svn: 348285
Change meaning of TargetOptions::EnableGlobalISel. The flag was
previously set only when a target switched on GlobalISel but it is now
always set when the GlobalISel pipeline is enabled. This makes the flag
consistent with TargetOptions::EnableFastISel and allows its use in
other parts of the compiler to determine when GlobalISel is enabled.
The EnableGlobalISel flag had previouly only one use in
TargetPassConfig::isGlobalISelAbortEnabled(). The method used its value
to determine if GlobalISel was enabled by a target and returned false in
such a case. To preserve the current behaviour, a new flag
TargetOptions::GlobalISelAbort is introduced to separately record the
abort behaviour.
Differential Revision: https://reviews.llvm.org/D54518
llvm-svn: 347861
Previous version used type erasure through a `void* (*)()` pointer,
which triggered gcc warning and implied a lot of reinterpret_cast.
This version should make it harder to hit ourselves in the foot.
Differential revision: https://reviews.llvm.org/D54203
llvm-svn: 346522
- Make some TargetPassConfig methods that just check whether options have
been set static.
- Shuffle code in LLVMTargetMachine around so addPassesToGenerateCode
only deals with TargetPassConfig now (but not with MCContext or the
creation of MachineModuleInfo)
llvm-svn: 345918
-verify-machineinstrs was implemented as a simple bool. As a result, the
'VerifyMachineCode == cl::BOU_UNSET' used by EXPENSIVE_CHECKS to make it on by
default but possible to disable didn't work as intended. Changed
-verify-machineinstrs to a boolOrDefault to correct this.
llvm-svn: 343696
-verify-machineinstrs inserts the MachineVerifier after every MachineInstr-based
pass. However, GlobalISel creates MachineInstr-based passes earlier than DAGISel
and the corresponding verifiers are not being added. This patch fixes that.
If GlobalISel triggers the fallback path then the MIR can be left in a bad
state that is going to be cleared by ResetMachineFunctions. In this situation
verifying between GlobalISel passes will prevent the fallback path from
recovering from this. As a result, we bail out of verifying a function if the
FailedISel attribute is present.
llvm-svn: 343613
This adds functionality to the outliner that allows targets to
specify certain functions that should be outlined from by default.
If a target supports default outlining, then it specifies that in
its TargetOptions. In the case that it does, and the user hasn't
specified that they *never* want to outline, the outliner will
be added to the pass pipeline and will run on those default functions.
This is a preliminary patch for turning the outliner on by default
under -Oz for AArch64.
https://reviews.llvm.org/D48776
llvm-svn: 336040
This is a recommit of r335887, which was erroneously committed earlier.
To enable the MachineOutliner by default on AArch64, we need to be able to
disable the MachineOutliner and also provide an option to "always" enable the
outliner.
This adds that capability. It allows the user to still use the old
-enable-machine-outliner option, which defaults to "always". This is building
up to allowing the user to specify "always" versus the target default
outlining behaviour.
https://reviews.llvm.org/D48682
llvm-svn: 335986
This is a recommit of r335879.
We shouldn't add the outliner when compiling at -O0 even if
-enable-machine-outliner is passed in. This makes sure that we
don't add it in this case.
This also removes -O0 from the outliner DWARF test.
llvm-svn: 335930
Targets should be able to define whether or not they support the outliner
without the outliner being added to the pass pipeline. Before this, the
outliner pass would be added, and ask the target whether or not it supports the
outliner.
After this, it's possible to query the target in TargetPassConfig, before the
outliner pass is created. This ensures that passing -enable-machine-outliner
will not modify the pass pipeline of any target that does not support it.
https://reviews.llvm.org/D48683
llvm-svn: 335887
This reverts commit 9c7c10e4073a0bc6a759ce5cd33afbac74930091.
It relies on r335872 since that introduces the machine outliner
flags test. I meant to commit D48683 in that commit, but got mixed
up and committed D48682 instead. So, I'm reverting this and
r335872, since D48682 hasn't made it through review yet.
llvm-svn: 335882
We shouldn't add the outliner when compiling at -O0 even if
-enable-machine-outliner is passed in. This makes sure that we
don't add it in this case.
This also updates machine-outliner-flags to reflect the change
and improves the comment describing what that test does.
llvm-svn: 335879
To enable the MachineOutliner by default on AArch64, we need to be able to
disable the MachineOutliner and also provide an option to "always" enable the
outliner.
This adds that capability. It allows the user to still use the old
-enable-machine-outliner option, which defaults to "always". This is building
up to allowing the user to specify "always" versus the target-default
outlining behaviour.
llvm-svn: 335872
This moves the EnableLinkOnceODROutlining flag from TargetPassConfig.cpp into
MachineOutliner.cpp. It also removes OutlineFromLinkOnceODRs from the
MachineOutliner constructor. This is now handled by the moved command-line
flag.
llvm-svn: 330373
Summary:
This pass sinks COPY instructions into a successor block, if the COPY is not
used in the current block and the COPY is live-in to a single successor
(i.e., doesn't require the COPY to be duplicated). This avoids executing the
the copy on paths where their results aren't needed. This also exposes
additional opportunites for dead copy elimination and shrink wrapping.
These copies were either not handled by or are inserted after the MachineSink
pass. As an example of the former case, the MachineSink pass cannot sink
COPY instructions with allocatable source registers; for AArch64 these type
of copy instructions are frequently used to move function parameters (PhyReg)
into virtual registers in the entry block..
For the machine IR below, this pass will sink %w19 in the entry into its
successor (%bb.1) because %w19 is only live-in in %bb.1.
```
%bb.0:
%wzr = SUBSWri %w1, 1
%w19 = COPY %w0
Bcc 11, %bb.2
%bb.1:
Live Ins: %w19
BL @fun
%w0 = ADDWrr %w0, %w19
RET %w0
%bb.2:
%w0 = COPY %wzr
RET %w0
```
As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
able to see %bb.0 as a candidate.
With this change I observed 12% more shrink-wrapping candidate and 13% more dead copies deleted in spec2000/2006/2017 on AArch64.
Reviewers: qcolombet, MatzeB, thegameg, mcrosier, gberry, hfinkel, john.brawn, twoh, RKSimon, sebpop, kparzysz
Reviewed By: sebpop
Subscribers: evandro, sebpop, sfertile, aemerson, mgorny, javed.absar, kristof.beyls, llvm-commits
Differential Revision: https://reviews.llvm.org/D41463
llvm-svn: 328237
Emulated TLS is enabled by llc flag -emulated-tls,
which is passed by clang driver.
When llc is called explicitly or from other drivers like LTO,
missing -emulated-tls flag would generate wrong TLS code for targets
that supports only this mode.
Now use useEmulatedTLS() instead of Options.EmulatedTLS to decide whether
emulated TLS code should be generated.
Unit tests are modified to run with and without the -emulated-tls flag.
Differential Revision: https://reviews.llvm.org/D42999
llvm-svn: 326341
Re-enable commit r323991 now that r325931 has been committed to make
MachineOperand::isRenamable() check more conservative w.r.t. code
changes and opt-in on a per-target basis.
llvm-svn: 326208
This reverts commit r323991.
This commit breaks target that don't model all the register constraints
in TableGen. So far the workaround was to set the
hasExtraXXXRegAllocReq, but it proves that it doesn't cover all the
cases.
For instance, when mutating an instruction (like in the lowering of
COPYs) the isRenamable flag is not properly updated. The same problem
will happen when attaching machine operand from one instruction to
another.
Geoff Berry is working on a fix in https://reviews.llvm.org/D43042.
llvm-svn: 325421
With fixes from rL324341.
Original commit message:
[MergeICmps] Enable the MergeICmps Pass by default.
Summary: Now that PR33325 is fixed, this should always improve the generated code.
Reviewers: spatel
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D42793
llvm-svn: 324465