This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
This switches to the workaround that HSA defaults to
for the mesa path.
This should be applied to the 4.0 branch.
Patch by Vedran Miletić <vedran@miletic.net>
llvm-svn: 292982
When the instruction is processed the first time, it may be
deleted resulting in crashes. While the new test adds the same
user to the worklist twice, this particular case doesn't crash
but I'm not sure why.
llvm-svn: 290191
Allow two users of the condition if the other user
is also a min/max select. i.e.
%c = icmp slt i32 %x, %y
%min = select i1 %c, i32 %x, i32 %y
%max = select i1 %c, i32 %y, i32 %x
llvm-svn: 269699
Summary:
They correspond to BUFFER_LOAD/STORE_DWORD[_X2,X3,X4] and mostly behave like
llvm.amdgcn.buffer.load/store.format. They will be used by Mesa for SSBO and
atomic counters at least when robust buffer access behavior is desired.
(These instructions perform no format conversion and do buffer range checking
per component.)
As a side effect of sharing patterns with llvm.amdgcn.buffer.store.format,
it has become trivial to add support for the f32 and v2f32 variants of that
intrinsic, so the patch does so.
Also DAG-ify (and fix) some tests that I noticed intermittent failures in
while developing this patch.
Some tests were (temporarily) adjusted for the required mayLoad/hasSideEffects
changes to the BUFFER_STORE_DWORD* instructions. See also
http://reviews.llvm.org/D18291.
Reviewers: arsenm, tstellarAMD, mareko
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18292
llvm-svn: 266126
v2: added more tests, moved the SALU->VALU conversion to a separate function
It looks like it's not possible to get subregisters in the S_ABS lowering
code, and I don't feel like guessing without testing what the correct code
would look like.
llvm-svn: 254095