The current support was essentially the amount necessary
to support replacing SymbolRefAttrs, but suffers from various
deficiencies (both ergonomic and functional):
* Replace crashes if unsupported
This makes it really hard to use safely, given that you don't know
if you are going to crash or not when using it.
* Types aren't supported
This seems like a simple missed addition when the attribute replacement
support was originally added.
* The ergonomics are weird
It currently uses an index based replacement, which makes the implementations
quite clunky.
This commit refactors support to be a bit more ergonomic, and also
adds support for types in the process. This was also a great oppurtunity
to greatly simplify how replacement is done in the symbol table.
Fixes#56355
Differential Revision: https://reviews.llvm.org/D130589
This patch adds constant folder for Exp2Op which only supports single and double precision floating-point.
Differential Revision: https://reviews.llvm.org/D130472
When this was updated in D127139 the update in-place case was no longer
marked as pessimistic. Add back in.
Differential Revision: https://reviews.llvm.org/D130453
This commit fixes a failure edge case where we accidentally drop forward
declared blocks in the error case. This allows for running the
invalid.mlir test in asan mode now.
Fixes#51387
Differential Revision: https://reviews.llvm.org/D130132
These functions don't depend on the C++ runtime and therefore belong to
CRunnerUtils. Clean up the macros on the way as `_MSC_VER` indicates the
compiler, not the platform, which is indicated by `_WIN32` and will be
present when, e.g., compiling with minGW.
Reviewed By: rdzhabarov
Differential Revision: https://reviews.llvm.org/D130025
When converted to the LLVM dialect, the memref.alloc and memref.free operations were generating calls to hardcoded 'malloc' and 'free' functions. This didn't leave any freedom to users to provide their custom implementation. Those operations now convert into calls to '_mlir_alloc' and '_mlir_free' functions, which have also been implemented into the runtime support library as wrappers to 'malloc' and 'free'. The same has been done for the 'aligned_alloc' function.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D128791
In the Transform dialect extensions, provide the separate mechanism to
declare dependent dialects (the dialects the transform IR depends on)
and the generated dialects (the dialects the payload IR may be
transformed into). This allows the Transform dialect clients that are
only constructing the transform IR to avoid loading the dialects
relevant for the payload IR along with the Transform dialect itself,
thus decreasing the build/link time.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D130289
https://reviews.llvm.org/D130023 added a memory leak in sparse_sampled_matmul.mlir
This diff fixes the memory leak.
Testing: Ran integration tests after building with -DLLVM_USE_SANITIZER=Address flag.
Reviewed By: springerm
Differential Revision: https://reviews.llvm.org/D130428
This patch adds constant folder for ExpOp which only supports single and double precision floating-point.
Differential Revision: https://reviews.llvm.org/D130318
For arith.constant operations of integer type, the operation generates
result names that include the value of the constant (i.e., the
IntegerAttr that defines the constant's value). That code currently
assumes integer widths of 64 bits or less and hits an assert with wider
constants or would create truncated and potentially ambiguous names when
built with assertions disabled.
To enable printing arith.constant ops for arbitrarily wide integer
types, change to use the IntegerAttr's function getValue() when
generating result names.
Also, add a regression test.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D129930
Previously the elements of the notes tuple would be invalid objects when
accessed from a diagnostic handler, resulting in a segfault when used.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D129943
This change adds a new DelinearizeIndexOp to the `arith` dialect. The
operation accepts an `index` type as well as a basis (array of index
values) representing how the index should be decomposed into a
multi-index. The decomposition obeys a canonical semantic that treats
the final basis element as "fastest varying" and the first basis element
as "slowest varying". A naive lowering of the operation using a sequence
of `arith.divui` and `arith.remui` operations is also given.
Differential Revision: https://reviews.llvm.org/D129697
Folding of transfer_write into transfer_read is already supported but
this requires the read and write to have the same permuation map.
After linalg vectorization it is common to have different ppermuation
map for write followed by read even though the cases could be
propagated.
This canonicalization handle cases where the permuation maps are
different but the data read and written match and replace the transfer
ops with broadcast and permuation
Differential Revision: https://reviews.llvm.org/D130135
Add a constraint to ensure that the operand and result of the
threadprivate operation are the same.
Reviewed By: peixin
Differential Revision: https://reviews.llvm.org/D128609
This is useful for building small test cases and will be utilized in a subsequent commit that adds a fusion example.
Differential Revision: https://reviews.llvm.org/D130344
This op fuses a given payload op into a given container op. Inside the container, all uses of the producer are replaced (fused) with the newly inserted op. If the producer is tileable and accessed via a tensor.extract_slice, the new op computes only the requested slice ("tile and fuse"). Otherwise, the entire tensor value is computed inside the container ("clone and fuse").
Differential Revision: https://reviews.llvm.org/D130244
Convert arith.cmpi to the canonical form with constants on the right side
to simplify further optimizations and open more opportunities for CSE.
Differential Revision: https://reviews.llvm.org/D129929
Add affine.if canonicalization to compose affine.apply ops into its set
and operands. This eliminates affine.apply ops feeding into affine.if
ops.
Differential Revision: https://reviews.llvm.org/D130242
Missed previously and needed to flip the default. Most of these just
flipped to _Raw to retain existing state/keep this small except for TOSA
dialect which got flipped to _Both as no further change was needed..
This is the same as the existing multiplier-1 variant of DepthwiseConv2D, but in PyTorch dim order.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D128575
This is to improve consistency within the SPIR-V dialect and make these ops a bit shorter.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D130280
This change modifies `structured.tile_to_foreach_thread_op` so that
it accepts either `tile_sizes` or `num_threads` parameters. If
`tile_sizes` are specified, then the number of threads required is
derived the tile sizes rather than the other way around. In both cases,
more aggressive folding of loop parameters is enabled during the
transformation, allowing for the potential elimination of `affine.min`
and `affine.max` operations in the static shape case when calculating
the final adjusted tile size.
Differential Revision: https://reviews.llvm.org/D130139
The type extraction helper function for block argument and op result
list objects was ignoring the slice entirely. So was the slice addition.
Both are caused by a misleading naming convention to implement slices
via CRTP. Make the convention more explicit and hide the helper
functions so users have harder time calling them directly.
Closes#56540.
Reviewed By: stellaraccident
Differential Revision: https://reviews.llvm.org/D130271
This operation is a NavigationOp that simplifies the writing of transform IR.
Since there is no way of refering to an interface by name, the current implementation uses
an EnumAttr and depends on the interfaces it supports.
In the future, it would be worthwhile to remove this dependence and generalize.
Differential Revision: https://reviews.llvm.org/D130267
Shape can be memref of index type, so memref::LoadOp result need to be converted into llvm type.
Differential Revision: https://reviews.llvm.org/D129965
Replace iterators of the outermost loop with region arguments of the innermost
one. The changes avoid later `bufferization` passes to insert allocation within
the body of the innermost loop.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D130083
Replace iterators of the outermost loop with region arguments of the innermost
one. The changes avoid later `bufferization` passes to insert allocation within
the body of the innermost loop.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D130083
The `tileAndFuseLinalgOps` is a legacy approach for tiling + fusion of
Linalg operations. Since it was also intended to work on operations
with buffer operands, this method had fairly complex logic to make
sure tile and fuse was correct even with side-effecting linalg ops.
While complex, it still wasnt robust enough. This patch deprecates
this method and thereby deprecating the tiling + fusion method for ops
with buffer semantics. Note that the core transformation to do fusion
of a producer with a tiled consumer still exists. The deprecation here
only removes methods that auto-magically tried to tile and fuse
correctly in presence of side-effects.
The `tileAndFuseLinalgOps` also works with operations with tensor
semantics. There are at least two other ways the same functionality
exists.
1) The `tileConsumerAndFuseProducers` method. This does a similar
transformation, but using a slightly different logic to
automatically figure out the legal tile + fuse code. Note that this
is also to be deprecated soon.
2) The prefered way uses the `TilingInterface` for tile + fuse, and
relies on the caller to set the tiling options correctly to ensure
that the generated code is correct.
As proof that (2) is equivalent to the functionality provided by
`tileAndFuseLinalgOps`, relevant tests have been moved to use the
interface, where the test driver sets the tile sizes appropriately to
generate the expected code.
Differential Revision: https://reviews.llvm.org/D129901
This patch adds constant folder for LogOp which only supports single and double precision floating-point.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D130148
This allows for automatically inserting expected checks for parser and verifier
diagnostics, which simplifies the workflow when building new dialect
constructs or extending existing ones.
Differential Revision: https://reviews.llvm.org/D130152
This patch adds a new function mlirDenseElementsAttrFloat16Get(),
which accepts the shaped type, the number of Float16 values, and a
pointer to an array of Float16 values, each of which is a uint16_t
value.
This commit is repeating https://reviews.llvm.org/D123981 + #761 but for Float16
Differential Revision: https://reviews.llvm.org/D130069
This is to improve the consistency within the SPIR-V dialect and to make op names a bit shorter.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D130194
This patch adds constant folder for Log1pOp which only supports single and double precision floating-point.
Differential Revision: https://reviews.llvm.org/D129979
This file contains a huge number of tests that should really be in
different dialect/files. It is monolothic because of the legacy
surrounding the old standard dialect, affine operations, etc. Splitting
this up makes the tests much more maintainable given that they are now
group with other similar tests.
This one required more changes than ideal due to overlapping generated name
with different return types. Changed getIndexingMaps to getIndexingMapsArray to
move it out of the way/highlight that it returns (more expensively) a
SmallVector and uses the prefixed name for the Attribute.
Differential Revision: https://reviews.llvm.org/D129919
For AttrDef declarations, place specified code in extraClassDefinition into the generated *.cpp.inc file.
Reviewed By: Mogball, rriddle
Differential Revision: https://reviews.llvm.org/D129574