Breaking a string literal or a function calls arguments with
AlignConsecutiveDeclarations or AlignConsecutiveAssignments did misalign
the continued line. E.g.:
void foo() {
int myVar = 5;
double x = 3.14;
auto str = "Hello"
"World";
}
or
void foo() {
int myVar = 5;
double x = 3.14;
auto str = "Hello"
"World";
}
Differential Revision: https://reviews.llvm.org/D98214
`expandedTokens(SourceRange)` used to do a binary search to get the
expanded tokens belonging to a source range. Each binary search uses
`isBeforeInTranslationUnit` to order two source locations. This is
inherently very slow.
By profiling clangd we found out that users like clangd::SelectionTree
spend 95% of time in `isBeforeInTranslationUnit`. Also it is worth
noting that users of `expandedTokens(SourceRange)` majorly use ranges
provided by AST to query this funciton. The ranges provided by AST are
token ranges (starting at the beginning of a token and ending at the
beginning of another token).
Therefore we can avoid the binary search in majority of the cases by
maintaining an index of ExpandedToken by their SourceLocations. We still
do binary search for ranges which are not token ranges but such
instances are quite low.
Performance:
`~/build/bin/clangd --check=clang/lib/Serialization/ASTReader.cpp`
Before: Took 2:10s to complete.
Now: Took 1:13s to complete.
Differential Revision: https://reviews.llvm.org/D99086
Commit
f7f9f94b2e
changed the indent of ObjC method arguments from +4 to +2, if the method
occurs after a block statement. I believe this was unintentional and there
was insufficient ObjC test coverage to catch this.
Example: `clang-format -style=google test.mm`
before:
```
void aaaaaaaaaaaaaaaaaaaaa(int c) {
if (c) {
f();
}
[dddddddddddddddddddddddddddddddddddddddddddddddddddddddd
eeeeeeeeeeeeeeeeeeeeeeeeeeeee:^(fffffffffffffff gggggggg) {
f(SSSSS, c);
}];
}
```
after:
```
void aaaaaaaaaaaaaaaaaaaaa(int c) {
if (c) {
f();
}
[dddddddddddddddddddddddddddddddddddddddddddddddddddddddd
eeeeeeeeeeeeeeeeeeeeeeeeeeeee:^(fffffffffffffff gggggggg) {
f(SSSSS, c);
}];
}
```
Differential Revision: https://reviews.llvm.org/D99063
As of CMake commit https://gitlab.kitware.com/cmake/cmake/-/commit/d993ebd4,
which first appeared in CMake 3.19.x series, in the compile commands for
clang-cl, CMake puts `--` before the input file. When operating on such a
database, the `InterpolatingCompilationDatabase` - specifically, the
`TransferableCommand` constructor - does not recognize that pattern and so, does
not strip the input, or the double dash when 'transferring' the compile command.
This results in a incorrect compile command - with the double dash and old input
file left in, and the language options and new input file appended after them,
where they're all treated as inputs, including the language version option.
Test files for some tests have names similar enough to be matched to commands
from the database, e.g.:
`.../path-mappings.test.tmp/server/bar.cpp`
can be matched to:
`.../Driver/ToolChains/BareMetal.cpp`
etc. When that happens, the tool being tested tries to use the matched, and
incorrectly 'transferred' compile command, and fails, reporting errors similar
to:
`error: no such file or directory: '/std:c++14'; did you mean '/std:c++14'? [clang-diagnostic-error]`
This happens in at least 4 tests:
Clang Tools :: clang-tidy/checkers/performance-trivially-destructible.cpp
Clangd :: check-fail.test
Clangd :: check.test
Clangd :: path-mappings.test
The fix for `TransferableCommand` removes the `--` and everything after it when
determining the arguments that apply to the new file. `--` is inserted in the
'transferred' command if the new file name starts with `-` and when operating in
clang-cl mode, also `/`. Additionally, other places in the code known to do
argument adjustment without accounting for the `--` and causing the tests to
fail are fixed as well.
Differential Revision: https://reviews.llvm.org/D98824
This moves the two tests we have for importing Objective-C nodes to their own
file. The motivation is that this means I can add more Objective-C tests without
making the compilation time of ASTImporterTest even longer. Also it seems nice
to separate the Apple-specific stuff from the ASTImporter test.
Reviewed By: martong
Differential Revision: https://reviews.llvm.org/D99162
Update ASTImporter to import value of FieldDecl::getCapturedVLAType.
Reviewed By: shafik, martong
Differential Revision: https://reviews.llvm.org/D99062
Objective-C apparently allows name conflicts between instance and class
properties, so this is valid code:
```
@protocol DupProp
@property (class, readonly) int prop;
@property (readonly) int prop;
@end
```
The ASTImporter however isn't aware of this and will consider the two properties
as if they are the same property because it just compares their name and types.
This causes that when importing both properties we only end up with one property
(whatever is imported first from what I can see).
Beside generating a different AST this also leads to a bunch of asserts and
crashes as we still correctly import the two different getters for both
properties (the import code for methods does the correct check where it
differentiated between instance and class methods). As one of the setters will
not have its associated ObjCPropertyDecl imported, any call to
`ObjCMethodDecl::findPropertyDecl` will just lead to an assert or crash.
Fixes rdar://74322659
Reviewed By: shafik, kastiglione
Differential Revision: https://reviews.llvm.org/D99077
ImmutableSet doesn't seem like the perfect fit for the RangeSet
data structure. It is good for saving memory in a persistent
setting, but not for the case when the population of the container
is tiny. This commit replaces RangeSet implementation and
redesigns the most common operations to be more efficient.
Differential Revision: https://reviews.llvm.org/D86465
Summary: Try to enable the support for C++20 coroutine keywords for AST
Matchers.
Reviewers: sammccall, njames93, aaron.ballman
Differential Revision: https://reviews.llvm.org/D96316
so that when --sysroot is specified, the detected GCC installation will not be
overridden by another from /usr which happens to have a larger version.
This behavior is particularly inconvenient when the system has a larger version
GCC while the user wants to try out an older sysroot.
Delete some tests from linux-ld.c which overlap with cross-linux.c
It is possible that imported `SourceLocExpr` can cause not expected behavior (if `__builtin_LINE()` is used together with `__LINE__` for example) but still it may be worth to import these because some projects use it.
Reviewed By: teemperor
Differential Revision: https://reviews.llvm.org/D98876
After the import, we did not copy the `TSCSpec`.
This commit resolves that.
Reviewed By: balazske
Differential Revision: https://reviews.llvm.org/D98707
SYCL compilations initiated by the driver will spawn off one or more
frontend compilation jobs (one for device and one for host). This patch
reworks the driver options to make upstreaming this from the downstream
SYCL fork easier.
This patch introduces a language option to identify host executions
(SYCLIsHost) and a -cc1 frontend option to enable this mode. -fsycl and
-fno-sycl become driver-only options that are rejected when passed to
-cc1. This is because the frontend and beyond should be looking at
whether the user is doing a device or host compilation specifically.
Because the frontend should only ever be in one mode or the other,
-fsycl-is-device and -fsycl-is-host are mutually exclusive options.
The idiom:
```
DeclContext::lookup_result R = DeclContext::lookup(Name);
for (auto *D : R) {...}
```
is not safe when in the loop body we trigger deserialization from an AST file.
The deserialization can insert new declarations in the StoredDeclsList whose
underlying type is a vector. When the vector decides to reallocate its storage
the pointer we hold becomes invalid.
This patch replaces a SmallVector with an singly-linked list. The current
approach stores a SmallVector<NamedDecl*, 4> which is around 8 pointers.
The linked list is 3, 5, or 7. We do better in terms of memory usage for small
cases (and worse in terms of locality -- the linked list entries won't be near
each other, but will be near their corresponding declarations, and we were going
to fetch those memory pages anyway). For larger cases: the vector uses a
doubling strategy for reallocation, so will generally be between half-full and
full. Let's say it's 75% full on average, so there's N * 4/3 + 4 pointers' worth
of space allocated currently and will be 2N pointers with the linked list. So we
break even when there are N=6 entries and slightly lose in terms of memory usage
after that. We suspect that's still a win on average.
Thanks to @rsmith!
Differential revision: https://reviews.llvm.org/D91524
Generate a json file containing descriptions of AST classes and their
public accessors which return SourceLocation or SourceRange.
Use the JSON file to generate a C++ API and implementation for accessing
the source locations and method names for accessing them for a given AST
node.
This new API can be used to implement 'srcloc' output in clang-query:
http://ce.steveire.com/z/m_kTIo
The JSON file can also be used to generate bindings for other languages,
such as Python and Javascript:
https://steveire.wordpress.com/2019/04/30/the-future-of-ast-matching
In this first version of this feature, only the accessors for Stmt
classes are generated, not Decls, TypeLocs etc. Those can be added
after this change is reviewed, as this change is mostly about
infrastructure of these code generators.
Also in this version, the platforms/cmake configurations are excluded as
much as possible so that support can be added iteratively. Currently a
break on any platform causes a revert of the entire feature. This way,
the `OR WIN32` can be removed in a future commit and if it breaks the
buildbots, only that commit gets reverted, making the entire process
easier to manage.
Differential Revision: https://reviews.llvm.org/D93164
Generate a json file containing descriptions of AST classes and their
public accessors which return SourceLocation or SourceRange.
Use the JSON file to generate a C++ API and implementation for accessing
the source locations and method names for accessing them for a given AST
node.
This new API can be used to implement 'srcloc' output in clang-query:
http://ce.steveire.com/z/m_kTIo
The JSON file can also be used to generate bindings for other languages,
such as Python and Javascript:
https://steveire.wordpress.com/2019/04/30/the-future-of-ast-matching
In this first version of this feature, only the accessors for Stmt
classes are generated, not Decls, TypeLocs etc. Those can be added
after this change is reviewed, as this change is mostly about
infrastructure of these code generators.
Also in this version, the platforms/cmake configurations are excluded as
much as possible so that support can be added iteratively. Currently a
break on any platform causes a revert of the entire feature. This way,
the `OR WIN32` can be removed in a future commit and if it breaks the
buildbots, only that commit gets reverted, making the entire process
easier to manage.
Differential Revision: https://reviews.llvm.org/D93164
Generate a json file containing descriptions of AST classes and their
public accessors which return SourceLocation or SourceRange.
Use the JSON file to generate a C++ API and implementation for accessing
the source locations and method names for accessing them for a given AST
node.
This new API can be used to implement 'srcloc' output in clang-query:
http://ce.steveire.com/z/m_kTIo
The JSON file can also be used to generate bindings for other languages,
such as Python and Javascript:
https://steveire.wordpress.com/2019/04/30/the-future-of-ast-matching
In this first version of this feature, only the accessors for Stmt
classes are generated, not Decls, TypeLocs etc. Those can be added
after this change is reviewed, as this change is mostly about
infrastructure of these code generators.
Also in this version, the platforms/cmake configurations are excluded as
much as possible so that support can be added iteratively. Currently a
break on any platform causes a revert of the entire feature. This way,
the `OR WIN32` can be removed in a future commit and if it breaks the
buildbots, only that commit gets reverted, making the entire process
easier to manage.
Differential Revision: https://reviews.llvm.org/D93164
Generate a json file containing descriptions of AST classes and their
public accessors which return SourceLocation or SourceRange.
Use the JSON file to generate a C++ API and implementation for accessing
the source locations and method names for accessing them for a given AST
node.
This new API can be used to implement 'srcloc' output in clang-query:
http://ce.steveire.com/z/m_kTIo
In this first version of this feature, only the accessors for Stmt
classes are generated, not Decls, TypeLocs etc. Those can be added
after this change is reviewed, as this change is mostly about
infrastructure of these code generators.
Differential Revision: https://reviews.llvm.org/D93164
Generate a json file containing descriptions of AST classes and their
public accessors which return SourceLocation or SourceRange.
Use the JSON file to generate a C++ API and implementation for accessing
the source locations and method names for accessing them for a given AST
node.
This new API can be used to implement 'srcloc' output in clang-query:
http://ce.steveire.com/z/m_kTIo
In this first version of this feature, only the accessors for Stmt
classes are generated, not Decls, TypeLocs etc. Those can be added
after this change is reviewed, as this change is mostly about
infrastructure of these code generators.
Differential Revision: https://reviews.llvm.org/D93164
This updates the canonical text proto raw string delimiter to `pb` for Google style, moving codebases towards a simpler and more consistent style.
Also updates a behavior where the canonical delimiter was not applied for raw strings with empty delimiters detected via well-known enclosing functions that expect a text proto, effectively making the canonical delimiter more viral. This feature is not widely used so this should be safe and more in line with promoting the canonicity of the canonical delimiter.
Reviewed By: sammccall
Differential Revision: https://reviews.llvm.org/D97688
We've observed this test being significantly flaky on our Mac CI
machines when we're running the full check-clang suite. It fails because
the wait_for condition isn't met within 3 seconds. We believe it's
because our CI machines are somewhat underpowered and pretty heavily
loaded when we're running the full check-clang suite.
I ran some experiments on increasing the timeout. I ran the full
check-clang suite 100 times with each timeout value and recorded how
many flaky failures we encountered in these tests. The results are:
3 second timeout (baseline): 20 failures
10 second timeout: 14 failures
20 second timeout: 4 failures
30 second timeout: 2 failures
40 second timeout: 1 failure
50 second timeout: 0 failures
60 second timeout: 0 failures
I ran another set of 100 tests for the 50 second timeout and observed
one flaky failure. By contrast, I ended up running check-clang 500 times
for the 60 second timeout and didn't observe a single flaky failure.
That's how the 60 second timeout value used in this patch was derived.
While a 60 second timeout might seem high, keep in mind that:
- This is a timeout, not a sleep; the test should require much less time
the vast majority of instances, especially on more powerful machines.
- The long timeout is most likely to occur when other tests are also
running at the same time, so the latency of the timeout will also be
masked by the latency of the other tests.
See https://reviews.llvm.org/D58418?id=200123#inline-554211 for where
this timeout was originally introduced and the possibility of raising it
if it wasn't enough was discussed.
Reviewed By: plotfi
Differential Revision: https://reviews.llvm.org/D97878
This commit removes the old way of handling Whitesmiths mode in favor of just setting the
levels during parsing and letting the formatter handle it from there. It requires a bit of
special-casing during the parsing, but ends up a bit cleaner than before. It also removes
some of switch/case unit tests that don't really make much sense when dealing with
Whitesmiths.
Differential Revision: https://reviews.llvm.org/D94500
Clang exposes an interface for extending the PCM/PCH file format: `ModuleFileExtension`.
Clang itself has only a single implementation of the interface: `TestModuleFileExtension` that can be instantiated via the `-ftest-module-file_extension=` command line argument (and is stored in `FrontendOptions::ModuleFileExtensions`).
Clients of the Clang library can extend the PCM/PCH file format by pushing an instance of their extension class to the `FrontendOptions::ModuleFileExtensions` vector.
When generating the `-ftest-module-file_extension=` command line argument from `FrontendOptions`, a downcast is used to distinguish between the Clang's testing extension and other (client) extensions.
This functionality is enabled by LLVM-style RTTI. However, this style of RTTI is hard to extend, as it requires patching Clang (adding new case to the `ModuleFileExtensionKind` enum).
This patch switches to the LLVM RTTI for open class hierarchies, which allows libClang users (e.g. Swift) to create implementations of `ModuleFileExtension` without patching Clang. (Documentation of the feature: https://llvm.org/docs/HowToSetUpLLVMStyleRTTI.html#rtti-for-open-class-hierarchies)
Reviewed By: artemcm
Differential Revision: https://reviews.llvm.org/D97702
clang-format documentation states that having enabled
FixNamespaceComments one may expect below code:
c++
namespace a {
foo();
}
to be turned into:
c++
namespace a {
foo();
} // namespace a
In reality, no "// namespace a" was added. The problem was too high
value of kShortNamespaceMaxLines, which is used while deciding whether
a namespace is long enough to be formatted.
As with 9163fe2, clang-format idempotence is preserved.
Differential Revision: https://reviews.llvm.org/D87587
... without an active column limit.
Before line comments were not touched at all with ColumnLimit == 0.
Differential Revision: https://reviews.llvm.org/D96896
Currently our strategy for getting header compile flags is something like:
A) look for flags for the header in compile_commands.json
This basically never works, build systems don't generate this info.
B) try to match to an impl file in compile_commands.json and use its flags
This only (mostly) works if the headers are in the same project.
C) give up and use fallback flags
This kind of works for stdlib in the default configuration, and
otherwise doesn't.
Obviously there are big gaps here.
This patch inserts a new attempt between A and B: if the header is
transitively included by any open file (whether same project or not),
then we use its compile command.
This doesn't make any attempt to solve some related problems:
- parsing non-self-contained header files in context (importing PP state)
- using the compile flags of non-opened candidate files found in the index
Fixes https://github.com/clangd/clangd/issues/123
Fixes https://github.com/clangd/clangd/issues/695
See https://github.com/clangd/clangd/issues/519
Differential Revision: https://reviews.llvm.org/D97351
This is a bug fix of https://bugs.llvm.org/show_bug.cgi?id=49175
The expected code format:
unsigned int* a;
int* b;
unsigned int Const* c;
The actual code after formatting (without this patch):
unsigned int* a;
int* b;
unsigned int Const* c;
Differential Revision: https://reviews.llvm.org/D97137
Adds support for coding styles that make a separate indentation level for access modifiers, such as Code::Blocks or QtCreator.
The new option, `IndentAccessModifiers`, if enabled, forces the content inside classes, structs and unions (“records”) to be indented twice while removing a level for access modifiers. The value of `AccessModifierOffset` is disregarded in this case, aiming towards an ease of use.
======
The PR (https://bugs.llvm.org/show_bug.cgi?id=19056) had an implementation attempt by @MyDeveloperDay already (https://reviews.llvm.org/D60225) but I've decided to start from scratch. They differ in functionality, chosen approaches, and even the option name. The code tries to re-use the existing functionality to achieve this behavior, limiting possibility of breaking something else.
Reviewed By: MyDeveloperDay, curdeius, HazardyKnusperkeks
Differential Revision: https://reviews.llvm.org/D94661
ASTContext were only passed to the StmtPrinter in some places, while it
is always available in DeclPrinter. The context is used by StmtPrinter to better
print statements in some cases, like printing constants as written.
Differential Revision: https://reviews.llvm.org/D97043
This reverts commit 6984e0d439.
While change by itself seems to be consistent with nullPointerConstant
docs of not matching "int i = 0;" but it's not clear why it's wrong and
9148302a2a author just forgot to update
the doc.
This change enables the builtin function declarations
in clang driver by default using the Tablegen solution
along with the implicit include of 'opencl-c-base.h'
header.
A new flag '-cl-no-stdinc' disabling all default
declarations and header includes is added. If any other
mechanisms were used to include the declarations (e.g.
with -Xclang -finclude-default-header) and the new default
approach is not sufficient the, `-cl-no-stdinc` flag has
to be used with clang to activate the old behavior.
Tags: #clang
Differential Revision: https://reviews.llvm.org/D96515
Removes `CrossTranslationUnitContext::getImportedFromSourceLocation`
Removes the corresponding unit-test segment.
Introduces the `CrossTranslationUnitContext::getMacroExpansionContextForSourceLocation`
which will return the macro expansion context for an imported TU. Also adds a
few implementation FIXME notes where applicable, since this feature is
not implemented yet. This fact is also noted as Doxygen comments.
Uplifts a few CTU LIT test to match the current **incomplete** behavior.
It is a regression to some extent since now we don't expand any
macros in imported TUs. At least we don't crash anymore.
Note that the introduced function is already covered by LIT tests.
Eg.: Analysis/plist-macros-with-expansion-ctu.c
Reviewed By: balazske, Szelethus
Differential Revision: https://reviews.llvm.org/D94673
Introduce `MacroExpansionContext` to track what and how macros in a translation
unit expand. This is the first element of the patch-stack in this direction.
The main goal is to substitute the current macro expansion generator in the
`PlistsDiagnostics`, but all the other `DiagnosticsConsumer` could benefit from
this.
`getExpandedText` and `getOriginalText` are the primary functions of this class.
The former can provide you the text that was the result of the macro expansion
chain starting from a `SourceLocation`.
While the latter will tell you **what text** was in the original source code
replaced by the macro expansion chain from that location.
Here is an example:
void bar();
#define retArg(x) x
#define retArgUnclosed retArg(bar()
#define BB CC
#define applyInt BB(int)
#define CC(x) retArgUnclosed
void unbalancedMacros() {
applyInt );
//^~~~~~~~~~^ is the substituted range
// Original text is "applyInt )"
// Expanded text is "bar()"
}
#define expandArgUnclosedCommaExpr(x) (x, bar(), 1
#define f expandArgUnclosedCommaExpr
void unbalancedMacros2() {
int x = f(f(1)) )); // Look at the parenthesis!
// ^~~~~~^ is the substituted range
// Original text is "f(f(1))"
// Expanded text is "((1,bar(),1,bar(),1"
}
Might worth investigating how to provide a reusable component, which could be
used for example by a standalone tool eg. expanding all macros to their
definitions.
I borrowed the main idea from the `PrintPreprocessedOutput.cpp` Frontend
component, providing a `PPCallbacks` instance hooking the preprocessor events.
I'm using that for calculating the source range where tokens will be expanded
to. I'm also using the `Preprocessor`'s `OnToken` callback, via the
`Preprocessor::setTokenWatcher` to reconstruct the expanded text.
Unfortunately, I concatenate the token's string representation without any
whitespaces except if the token is an identifier when I emit an extra space
to produce valid code for `int var` token sequences.
This could be improved later if needed.
Patch-stack:
1) D93222 (this one) Introduces the MacroExpansionContext class and unittests
2) D93223 Create MacroExpansionContext member in AnalysisConsumer and pass
down to the diagnostics consumers
3) D93224 Use the MacroExpansionContext for macro expansions in plists
It replaces the 'old' macro expansion mechanism.
4) D94673 API for CTU macro expansions
You should be able to get a `MacroExpansionContext` for each imported TU.
Right now it will just return `llvm::None` as this is not implemented yet.
5) FIXME: Implement macro expansion tracking for imported TUs as well.
It would also relieve us from bugs like:
- [fixed] D86135
- [confirmed] The `__VA_ARGS__` and other macro nitty-gritty, such as how to
stringify macro parameters, where to put or swallow commas, etc. are not
handled correctly.
- [confirmed] Unbalanced parenthesis are not well handled - resulting in
incorrect expansions or even crashes.
- [confirmed][crashing] https://bugs.llvm.org/show_bug.cgi?id=48358
Reviewed By: martong, Szelethus
Differential Revision: https://reviews.llvm.org/D93222
This reverts commit 9148302a (2019-08-22) which broke the pre-existing
unit test for the matcher. Also revert commit 518b2266 (Fix the
nullPointerConstant() test to get bots back to green., 2019-08-22) which
incorrectly changed the test to expect the broken behavior.
Differential Revision: https://reviews.llvm.org/D96665
For example, before this patch we can use has() to get from a
cxxRewrittenBinaryOperator to its operand, but hasParent doesn't get
back to the cxxRewrittenBinaryOperator. This patch fixes that.
Differential Revision: https://reviews.llvm.org/D96113